

Design and Development of an Arduino based Real

Time Monitoring System for Measuring NOx

Emission from Vehicular Exhaust.

Abstract
The goal of my project is to find a way to remove the NOx emission from air particularly

that emitted from automobile exhaust. NOx is one of the most dangerous pollutants in

existence, not only being highly corrosive and toxic itself, but also catalyzing the

formation of ground level ozone from oxygen. Since my project focuses on NO 2

removal, I needed a device to measure the emission of NO 2 . However, sensors that

have capabilities that I needed were extremely expensive. So, I decided to build a

device. The measuring device uses a gas sensor - MICS 2714 to measure NO 2

concentration and an arduino nano as the microcontroller. The system also records the

data every 30 seconds onto a storage device (SD card) and displays the data on a LCD

screen. It is controlled via two buttons, one to reboot the device in the event of a failure,

and the other to take user input. I had tried to use another gas sensor MICS 6814 but

the result from that was unreliable. The final device however, was able to measure the

gas emission. The voltage measurement which is the raw input from the sensor is

converted to ppm of NO 2 and is recorded on a microSD card every 30 second. My

device is able to measure the difference in gas concentration between the initial input

(exhaust) and final output which passes through the carbon adsorption layer. The

device uses the conversion formula similar to the one used in Libelium Gases V3.0. In

the future, I would like to calibrate the sensor using the known concentration of NO 2 ,

however, the necessary calibration cylinders were unavailable to me at this time.

Design
The device to measure the emission of NO 2 required 5 main capabilities :

● Measure the concentration of NO 2 in the initial exhaust input and after it has

passed through the adsorption layer.

● Record the above data to a SD card every 30 seconds.

● Display the data on a screen while the test is being performed.

● Give accurate results outdoors and in a snowblower exhaust.

● Run on its own without a computer and only a power outlet.

The final device contained five components :

● a MICS 2714 NO2 sensor to take the readings

● an I2C LCD display to show the readings and other messages

● an arduino nano to control the device

● a microSD card and adapter to store the data

● a control board containing two buttons and an LED.

I decided to use an arduino nano because of its small size and because it is easy to

solder. However, it has no way of storing large amounts of data after reboot. Because of

this, I had to add an external storage device. I used a microSD card to store the data.

The full circuit connections are shown in Figure 1a and the actual device is shown in

Figure 1b.

For the first prototype I had two sensors and no control panel. It was difficult to use and

often gave erroneous results. I found multiple flaws in this device:

● It could not take user input, all it did from the moment it was plugged in was start

writing to the SD card.

● The arduino could not supply enough power to power both sensors, only one

sensor was accurate, making the device even more difficult to use.

● The gas sensor I used, the Mics 6814, could only operate accurately at a

particular temperature range, requiring that the sensor be given 10-20 minute

warm-up times and that the temperature be very close to 25˚ C.

For my second prototype, I fixed all of these issues. I changed the prototype to include

only one sensor and have a control panel. The control panel allowed the user to

communicate with the machine and made the device much easier to use. To resolve the

sensor issue, I used one Mics 2714. The Mics 2714 operates at a wider range of

temperatures. However, by using only one sensor, I can only get the real time data from

the treated gas and I have to assume that the NO2 output from the snowblower is

constant. This means that the file that stores the untreated gas ppm only has one data

point but the treated gas values are being taken in real time. Now we will get into a

more in-depth look at each of the parts.

Device Parts

SD Card Reader

The microSD card is used to store the data from the sensor. Figure 3 shows both the

microSD card and the reader. Since it has an on-board voltage regulator, it can be

powered on both 5V and 3.3V It communicates with the board using SPI, Serial

Peripheral Interface, communication protocol. SPI uses four pins, SCK, MOSI, MISO,

and SS. SS is Slave Select, it allows the master to select a certain slave to

communicate with. I only had one device, so this pin wasn’t very important. SCK is the

clock pin, it pulses to allow both the master and the slave to communicate

synchronously. MOSI stands for Master Out Slave In and is the connection through

which the master writes to the slave. MISO stands for Master In Slave Out and is the

connection through which the master takes data from the slave. To avoid having to write

the SPI communication code, I used the SD.h library. This allowed me to use pre-made

functions and made the code much easier to write.

Gas Sensors

The Mics 2714 and the Mics 6814 are NO2 sensitive gas sensors. Figure 4a shows the

Mics 2714 and figure 4b shows the Mics 6814. Below is a comparison of the sensors.

Mics 2714 Mics 6814

Pros Cons Pros Cons

Wide temperature

range.

Can only sense

NO2.

Can sense CO,

NH3, and NO2.

Require specific

temperature range.

Not cross sensitive

to any gases.

Requires

Calibration.

Calibration Free Cross sensitive to

hydrocarbons.

Industrial Grade

sensor.

Hard to find in

usable form, is

mostly sold as a

SMD device.

Very easy to find in

THT breakout

board form.

Very un-precise,

useful only for high,

medium, and low

indicators.

Heats up in 30

seconds

 Takes 10 mins to

heat up.

The Mics 2714 is a much better sensor than the Mics

6814. However, it is a SMD sensor, meaning that it

needs to be soldered on a printed circuit board. The

small silver rectangle in figure 4a is the sensing

device. On top of this, since the sensor is quite

sensitive, it needs to be soldered in a neutral air

reflow soldering oven. I had neither the circuit board nor the oven. Because of this, I

tried to use the Mics 6814 on a breakout board (A breakout board is a board onto which

a component is placed that makes a component easier to use. In this case, it converted

the SMD sensor to a THT device).

However, the Mics 6814 didn’t fit my needs, its accuracy was

further reduced in the temperature range outdoors, it was

cross sensitive to hydrocarbons like ethanol, often gave

erroneous results, and it required long heat up periods of ten

to twenty minutes. When designing my second prototype, I

designed it to include only one sensor. I also purchased a Mics

2714 breakout board.

The Mics 2714 gave much better results, however, it required calibration that I did not

have the tools to do. So, I used a formula from waspmote gas sensor website which

also uses mics 2714 in the device to get an approximation of the ppm. The formula is

https://www.codecogs.com/eqnedit.php?latex=10%5E%7B%5Cleft(%5Cdfrac%7B%5Clog_%7B10%7D%5Cleft(%5Cdfrac%7B1.8%20%5Ccdot%202%7D%20%7BmV%7D%20-%202%5Cright)%20-%202.176%7D%20%7B-1.737%7D%5Cright)%7D%0

where mV is the milliVolt reading taken from the sensors. This final system worked quite

well with the NO2 value increasing when the sensor was exposed to the snowblower

exhaust. However, I do not know whether these values are 100% accurate as I couldn’t

test the exhaust against a properly calibrated NOx measuring device. However my

project required the concentration difference between the initial input exhaust and after

it has passed through a carbon adsorption layer and it was able to measure the required

data.

Serial I2C LCD

The I2C LCD is used to display the data from the sensor as well as print messages to

instruct the user what to do next. Figure 5 shows the LCD screen. It uses I2C (Inter-IC)

communication protocol to communicate with the arduino. This shortens down the

sixteen pins in a normal LCD down to only four, 5V power, ground, SCL and SCL. SCL

is the clock, just like in SPI. SDA is the data transfer pin. Because I2C does not have a

slave select pin, it is necessary to specify the hexadecimal address of the device to be

used. Since I was only using one LCD, this was not important to me. Unlike the arduino

uno, the arduino nano doesn’t have a separate SDA and SCL pin. Instead, analog input

pin four is SDA and analog input pin five is SCL. To avoid having to write the I2C

communication code, I used the libraries Wire.h and LiquidCrystal_I2C.h.

Arduino Nano

The arduino nano is a programmable microcontroller with an 14 pin GPIO interface, 8

analog inputs and an ATmega328 as the CPU. Each GPIO pin can be set to either

INPUT or INPUT_PULLUP. INPUT means that the pin when the pin is neither LOW

(connected to ground) or HIGH (connected to 5V), it will randomly fluctuate between the

two. When INPUT_PULLUP is enabled, the inbuilt pull-up resistor will be activated and

the pin will default to HIGH unless otherwise specified. The arduino nano also has 30

KB of open flash memory, memory that the code is stored in. This cannot be used by

the program itself. The arduino has 1 KB of EEPROM, usable memory that can stay

after reboot and 2 KB of SRAM, program memory that stores variables and is deleted

after reboot. The arduino Nano was powered using a standard power outlet to USB

converter and a mini USB to standard USB connector cable. Figure 6 shows the

Arduino Nano on it’s board.

Control Board

The control board consisted of an LED and two pushbuttons. The device has four

pins, LED input, button one output, button two output, and ground. When the button is

pressed, the button’s pin goes to LOW. To make sure the value doesn’t fluctuate

between HIGH and LOW when the button is not pressed, the code activates the pullup

resistor for both the button pins. Figure 7 shows the control panel.

Code
The code for the device has four stages, heat up, untreated input measurement, treated

data measurement, and shutdown. Figure 8 is a detailed flow chart.

Code Steps

To start, the code checks if the lock file exists. The lock file is created if the device is in

the middle of a test. That way, if the device loses power, the program gets right back to

taking data, instead of re-entering the heat up

stage. If the lock file exists, the code skips the heat

up and untreated gas measurement and gets back

to the data collection. If the lock file doesn’t exist,

then it starts by heating up the sensor. The Mics

2714 only needs 30 seconds, so this doesn’t take

long. Figure 9 shows the LCD in the heat up

phase. Then, once the device has warmed up, it

takes the untreated gas reading, which is labeled

on the LCD as input . Figure 10 shows the LCD at

this stage. When the user presses the button, it

records the NO2 reading for the untreated gas into

the file and moves onto the next step. Then it tells

the user to put the sensor behind the treatment

device and press the button, as shown in Figure

11. Then, as shown in Figure 12, the device will

start taking the NO2 measurement every 30

seconds. It continues this until the button is

pressed. Then, it deletes the lock file and displays

the message “Please Shutdown”.

The code is shown in Appendix A.

Output Data
The code has five separate files:

1. The untreated gas ppm called Input.txt

2. The treated gas ppm called Data.txt

3. The raw voltage data from the untreated gas called RawInput.txt

4. The raw voltage data from the treated gas called RawData.txt

5. The lock file called Lock.txt

When a new test begins, the code writes ***New Test Begins Here*** . When the sensor

is introduced into a new environment, the value fluctuates for some time before

stabilizing.

This is a some sample data from Input.txt:

New Test Begins Here

0.41

New Test Begins Here

0.45

This is a some sample data from Data.txt:

New Test Begins Here

0.25

0.25

[More data points which have been omitted]

0.23

This is a some sample data from RawInput.txt:

New Test Begins Here

565

New Test Begins Here

414

This is a some sample data from RawData.txt:

New Test Begins Here

427

432

[More data points which have been omitted]

369

The data from the SD card is then transferred to a computer, where I can graph the data

and see how the test went.

Results
Graph 1 - This test didn’t run to completion as the snowblower ran out of gasoline after

30 mins.

Graph 2 - This test ran till the activated carbon was saturated. Outliers were the sensor

gave 0 ppm were remove

Graph 3 - This test ran until the charcoal was saturated.The same outliers were

removed.

Discussion
At the beginning of test 2, for around 5 mins, the sensor fluctuates, then it evens out.

The sensor’s accuracy is 0.05, so while the values seem to fluctuate, it is just random

fluctuations. With error taken into account, there is very little fluctuation in the ppm. This

is because of the geometry of the adsorption device. The charcoal is in a long thin tube,

so only a small fraction of the charcoal is exposed to the NO 2 at a time. Little to no NO 2

is allowed into another section before the carbon in front of it is completely adsorbed.

Then, the process repeats with the next section of carbon. This keeps happening until

the last section of carbon is used. Then, with nothing to stop it, the NO 2 comes out with

little to no adsorption. At this point, the test is over. The same pattern is shown in test 3.

Test 1 shows only the beginning of this process, so the NO 2 value never climbs to the

final 0.5 ppm. However, the charcoal wasn’t well packed in this test so more of the NO 2

escaped.

Conclusion
This device worked according to my original standards, it could run on its own, it could

take the readings from the test setup. The gas concentration in ppm may not be

absolutely accurate though. In the future, I would like to calibrate the sensors using

known calibration cylinders. This device greatly improved the quality of my experiment,

giving me an inexpensive way to measure NO2 concentration.

References
● Micro SD Card Micro SDHC Mini TF Card Adapter Reader Module for Arduino.

Retrieved from

http://datalogger.pbworks.com/w/file/fetch/89507207/Datalogger%20-%20SD%20

Memory%20Reader%20Datasheet.pdf

http://datalogger.pbworks.com/w/file/fetch/89507207/Datalogger%20-%20SD%20Memory%20Reader%20Datasheet.pdf
http://datalogger.pbworks.com/w/file/fetch/89507207/Datalogger%20-%20SD%20Memory%20Reader%20Datasheet.pdf

● Mics 2714 datasheet. Retrieved from

https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-

2714.pdf

● Mics 6814 datasheet. Retrieved from

https://sgx.cdistore.com/datasheets/sgx/1143_datasheet%20mics-6814%20rev%

208.pdf

● Libelium Smart Gases 3.0. Retrieved from

http://www.libelium.com/downloads/documentation/gases_sensor_board_3.0.pdf

https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf
https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf
https://sgx.cdistore.com/datasheets/sgx/1143_datasheet%20mics-6814%20rev%208.pdf
https://sgx.cdistore.com/datasheets/sgx/1143_datasheet%20mics-6814%20rev%208.pdf
http://www.libelium.com/downloads/documentation/gases_sensor_board_3.0.pdf

Appendix A: NO 2 Monitoring Code
//include libraries
#include <SPI.h>
#include <SD.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 20, 4); //define the I2C lcd address to be at 0x27 hex.
//Mics 2714 Pin
int SensorPin = A0;
//Button to stop and start test
int Button = 2;
//Button to reset test
int ResetButton = 3;
//LED indicator - not used yet.
int LED = 5;

//PPM value of NO2
float NO2ppm;
//Raw sensor value
int AnalogVal;
unsigned long CurrentTime = 0;
unsigned long AlarmTime = 0;
int gapTime = 30000;

//Define Files
File RawData; //Stores raw voltage for data
File RawInput;//Stores raw voltage for input
File Data; // Stores ppm for data
File Input; // Stores ppm for input
File lock; // The lock file exists if the code was running before restart

void setup() {
 pinMode(Button, INPUT_PULLUP);
 pinMode(ResetButton, INPUT_PULLUP);
 //Initialize SD card
 if (!SD.begin(4)) {
 Serial.println("initialization failed!");
 return;
 }

 //Open the files
 lcd.init(); //initialize the lcd
 lcd.backlight();//activate the backlight
 if (!SD.exists("lock.txt")) { // the lock file indicates that the code was running before reset, and
that it should resume void loop without going through setup
 //Open files
 RawData = SD.open("RawData.txt", FILE_WRITE);
 RawInput = SD.open("RawInput.txt", FILE_WRITE);
 Data = SD.open("Data.txt", FILE_WRITE);
 Input = SD.open("Input.txt", FILE_WRITE);
 //Write new data line
 RawData.println("***New Test Begins Here***");
 RawInput.println("***New Test Begins Here***");
 Data.println("***New Test Begins Here***");
 Input.println("***New Test Begins Here***");
 //Close files
 RawData.close();
 RawInput.close();
 Data.close();
 Input.close();
 //Display on LCD
 lcd.setCursor(0, 0);
 lcd.print("Activated");
 delay(2000);
 lcd.clear();
 //Heat up sensor for 30 secs
 heatUp();
 // Read initial data
 readInitialData();
 lcd.clear();
 delay(1000);
 //Ready for testing
 lcd.setCursor(0, 0);
 lcd.print("Put sensor in output");
 lcd.setCursor(0, 1);
 lcd.print("Push button when");
 lcd.setCursor(0, 2);
 lcd.print("complete.");
 while (digitalRead(Button) != LOW) {
 }
 //Create lock file to indicate test started.
 lock = SD.open("lock.txt", FILE_WRITE);
 lock.close();

 lcd.clear();
 delay(1000);
 }
}

//Reset the arduino board
void(* resetFunc) (void) = 0;

//Processing code
void loop() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Push button to end");
 //Open file for writing data
 Data = SD.open("Data.txt", FILE_WRITE);
 RawData = SD.open("RawData.txt", FILE_WRITE);
 while (digitalRead(Button) != LOW) {
 if (alarm()) {
 //Get average of 5 reads
 AnalogVal = averageRead();
 //Calculate PPM value
 NO2ppm = calculatePPM(AnalogVal);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Push button to end");
 lcd.setCursor(0, 1);
 lcd.print(NO2ppm, 3);
 Data.println(NO2ppm);
 RawData.println(AnalogVal);
 }
 if (digitalRead(ResetButton) == LOW) {
 Data.close();
 RawData.close();
 resetFunc();
 }
 }
 //Close files
 Data.close();
 RawData.close();
 lcd.clear();
 SD.remove("lock.txt");
 lcd.setCursor(0, 0);
 // System ok to shutdown

 lcd.print("Please shutdown");
 while (true) {
 }
}

bool alarm() {
 bool Output = false;
 CurrentTime = millis(); //set current time to system time
 if (CurrentTime >= AlarmTime) {
 CurrentTime = millis();
 AlarmTime = CurrentTime + gapTime;
 Output = true;
 }
 return (Output);
}
//Read initial input data
void readInitialData() {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Put sensor in input");
 lcd.setCursor(0, 1);
 lcd.print("Press button when ");
 lcd.setCursor(0, 2);
 lcd.print("complete");
 while (digitalRead(Button) != LOW) {
 lcd.setCursor(0, 3);
 lcd.print("NO2: ");
 lcd.setCursor(5, 3);
 NO2ppm = calculatePPM(averageRead());
 lcd.print(NO2ppm, 3);
 delay(1000);
 }
 Input = SD.open("Input.txt", FILE_WRITE);
 RawInput = SD.open("RawInput.txt", FILE_WRITE);
 int Val = averageRead();
 RawInput.println(Val);
 Input.println(calculatePPM(Val));
 RawInput.close();
 Input.close();
}

//Give 30 seconds heat up time
void heatUp() {

 lcd.setCursor(0, 0);
 lcd.print("Heating Up");
 delay(30000);
 lcd.clear();
 lcd.print("Done");
 delay(1000);
}

//Calculate PPM value
float calculatePPM(int analogVal) {
 float mvoltage = (analogVal * (5.0 / 1023.0)) / 1000;
 float rawSensorVal = ((1.8 * 2) / mvoltage) - 2;
 float ppm = pow(10, (log10(rawSensorVal) - 2.176) / (-1.737));
 return (ppm);
}

//Calculate average sensor value based on 5 reads
int averageRead() {
 int read1 = analogRead(SensorPin);
 int read2 = analogRead(SensorPin);
 int read3 = analogRead(SensorPin);
 int read4 = analogRead(SensorPin);
 int read5 = analogRead(SensorPin);
 int readAvg = (read1 + read2 + read3 + read4 + read5) / 5;
 return (readAvg);
}

