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Abstract

Using computational signal analysis, this paper executes noise removal through a Low Pass Filter

(LPF) and various windows. By executing noise removal with various combinations of filters and

windows, we search for efficient models. We substantiate the efficiency of the filter and the windows

through a comparison of the pure sample, pure voice, and noise removal outputs. Application of LPF

reduced the amplitude of pure noise, while application of windows augmented the amplitude of pure

voice. By applying both LPF and windows, we can execute efficient noise removal.

Also, for analysis of denoising of bioimage, further experiments with the proposed filter showed that

it increased the resolution of the image while taking less time compared to other filters tested before to

form the final image.  The proposed filter was created by multiplying three parts: LPF, new filter

equation, and full K-space. Using the selected filter, vast data that was collected from a patient were

transformed into a final image using mathematical transformations.

Introduction

Noise reduction is essential to produce audible sound files and proceed with precise

communication; it is also of vital importance in creating images. Various noises disrupt and distort the

original sounds and signals, puzzling the audience. Especially, when noise interferes with speech, the

noise obscures the speech and results in the speech in slightly degraded to completely unintelligible,

depending on its amount and type. Because these noises are inevitable, accurate noise removal is

necessary for clear communication. Because we are relatively more sensitive to the higher frequency

sounds than lower frequency sounds, we are vulnerable to noises, that mainly consisted of high-frequency

sounds compared to main sound sources such as voice. To emphasize and enhance the original signal, we

diminish the noise and amplify the signal.

Numerous filters are designed to reduce the effects of noise and enhance the original sound. These

noise-removing systems are improved by implicating various filters and windows, also applying some

algorithms. Discrete-wavelet transform-based algorithm is used for speech denoising and the outputs are

calculated using thresholding methods. [1] Other algorithms, such as Least Mean Square, Normalized



Least Mean Square, and Sign-Data Least Mean Square, are used to remove the noise efficiently. [2] Also,

a stand-alone noise suppression algorithm is investigated for its reduction of spectral effects of acoustic

noise. [3] Not only the algorithms but also the filters, such as Finite Impulse Response filters using the

Frequency Response Masking technique, are designed to remove high-frequency noise or randomized

noise. [4-5] Karam and Verteletskaya investigated using spectral subtraction to remove noise from noisy

speech signals in the frequency domain. [6-7]

The main objective of part A of this research is to find the best-fit filter design in order to reach

the highest efficiency in noise reduction.

The main purpose of part B of this research was to develop a better algorithm that would both

enhance the quality of the final image and decrease the amount of time taken to produce it. An ideal LPF

would be able to increase the resolution of an image as well as decrease the Ringing Artifact.  In this

experiment, various functions were tested as LPFs: Square function, Gaussian function, and circle

function. All the functions showed their distinct features. When a square function was used as an LPF, it

created the Sinc function over the image domain. When the domain of the square function increased,

more data in the K-space was captured, resulting in images of a high resolution. When the domain of the

square function decreased, fewer data in the K-space was captured, resulting in a lower resolution. In

addition to the observation of the consequential resolution of the images produced, when a wide square

function was used, a narrow Sinc function formed as a result.

*All graphs were produced by MatLab.

Materials and Methods

In this paper, we employ combinations of Low Pass Filter and some windows, such as Hanning,

Bartlett, Hamming, and Blackman window, to remove noise. We implicate the filter design at simple

trigonometric functions and realistic samples to substantiate the noise-removing efficiency of the filter

design. We used MATLAB to analyze the audio files and execute Fast Fourier Transform.

A. Sound Analysis (*All the graphs are from implementing MatLab)

Noise Removal Using Simple Functions

Sample 1.



N = 400;
n = [0:N];
fm = 20;
fn = 100;
T = 0.001;

Voice: cos(2*pi*fm*n*T)
Noise: cos(2*pi*fn*n*T)

(a) (b)

(c) (d)
Fig 1 (a). Voice v(t) (b). Noise n(t) (c). Input signal = Voice v(t) + Noise n(t) (d). Fourier transformation
of x(t) to find magnitude |FX| in the frequency domain

(a) (b)
Fig 2 (a). Comparison of the graph y(t) after the use of the FIR filter vs the graph of the input signal. (b).
Comparison of the Fourier transform of noise removal output vs input signal. The amplitude of voice
decreased a little while the amplitude of noise notably decreased when noise removal process is executed.



(a) (b)
Fig 3 (a). Comparison of the graph y(t) after the use of the Hanning window vs the graph of the input
signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The amplitude
of voice increased while the amplitude of noise stayed the same when noise removal process is executed.

(a) (b)

Fig 4 (a). Comparison of the graph y(t) after the use of the FIR filter and Hanning window vs the graph of
the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)

Fig 5 (a). Comparison of the graph y(t) after the use of the FIR filter and Bartlett window vs the graph of
the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



(a) (b)

Fig 6 (a). Comparison of the graph y(t) after the use of the FIR filter and Hamming window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)

Fig 7 (a). Comparison of the graph y(t) after the use of the FIR filter and Blackman window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



Sample 2.

N = 400;
n = [0:N];
fm = 20;
fn = 100;
T = 0.001;

Voice: sin(2*pi*fm*n*T)
Noise: sin(2*pi*fn*n*T)

(a) (b)

(c) (d)
Fig 8 (a). Voice v(t) (b). Noise n(t) (c). Input signal = Voice v(t) + Noise n(t) (d). Fourier transformation
of x(t) to find magnitude |FX| in the frequency domain

(a) (b)
Fig 9 (a). Comparison of the graph y(t) after the use of the FIR filter vs the graph of the input signal. (b).
Comparison of the Fourier transform of noise removal output vs input signal. The amplitude of voice
decreased a little while the amplitude of noise notably decreased when noise removal process is executed.



(a) (b)
Fig 10 (a). Comparison of the graph y(t) after the use of the Hanning window vs the graph of the input
signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The amplitude
of voice increased while the amplitude of noise stayed the same when noise removal process is executed.

(a) (b)
Fig 11 (a). Comparison of the graph y(t) after the use of the FIR filter and Hanning window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 12 (a). Comparison of the graph y(t) after the use of the FIR filter and Bartlett window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



(a) (b)
Fig 13 (a). Comparison of the graph y(t) after the use of the FIR filter and Hamming window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 14 (a). Comparison of the graph y(t) after the use of the FIR filter and Blackman window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise stayed the same when noise removal process is
executed.



Sample 3.

N = 400;
n = [0:N];
fm = 20;
fn = 100;
T = 0.001;

Voice: cos(2*pi*fm*n*T)
Noise: 0.6*cos(2*pi*fn*n*T)+0.8*sin(2*pi*fn*n*T)

(a) (b)

(c) (d)
Fig 15 (a). Voice v(t) (b). Noise n(t) (c). Input signal = Voice v(t) + Noise n(t) (d). Fourier transformation
of x(t) to find magnitude |FX| in the frequency domain

(a) (b)
Fig 16 (a). Comparison of the graph y(t) after the use of the FIR filter vs the graph of the input signal. (b).
Comparison of the Fourier transform of noise removal output vs input signal. The amplitude of voice
decreased a little while the amplitude of noise notably decreased when noise removal process is executed.



(a) (b)
Fig 17 (a). Comparison of the graph y(t) after the use of the Hanning window vs the graph of the input
signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The amplitude
of voice increased while the amplitude of noise stayed the same when noise removal process is executed.

(a) (b)
Fig 18 (a). Comparison of the graph y(t) after the use of the FIR filter and Hanning window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 19 (a). Comparison of the graph y(t) after the use of the FIR filter and Bartlett window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



(a) (b)
Fig 20 (a). Comparison of the graph y(t) after the use of the FIR filter and Hamming window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 21 (a). Comparison of the graph y(t) after the use of the FIR filter and Blackman window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise stayed the same when noise removal process is
executed.



Sample 4.

N = 400;
n = [0:N];
fm = 20;
fn = 50;
T = 0.001;

Voice: sin(2*pi*fm*n*T)
Noise: sin(2*pi*fn*n*T)

(a) (b)

(c) (d)
Fig 22 (a). Voice v(t) (b). Noise n(t) (c). Input signal = Voice v(t) + Noise n(t) (d). Fourier transformation
of x(t) to find magnitude |FX| in the frequency domain

(a) (b)
Fig 23 (a). Comparison of the graph y(t) after the use of the FIR filter vs the graph of the input signal. (b).
Comparison of the Fourier transform of noise removal output vs input signal. The amplitude of voice
decreased a little while the amplitude of noise decreased a little more when noise removal process is
executed.



(a) (b)
Fig 24 (a). Comparison of the graph y(t) after the use of the Hanning window vs the graph of the input
signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The amplitude
of voice increased more, compared to the amplitude of noise.

(a) (b)
Fig 25 (a). Comparison of the graph y(t) after the use of the FIR filter and Hanning window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased more, compared to the amplitude of noise.

(a) (b)
Fig 26 (a). Comparison of the graph y(t) after the use of the FIR filter and Bartlett window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased more, compared to the amplitude of noise.



(a) (b)
Fig 27 (a). Comparison of the graph y(t) after the use of the FIR filter and Hamming window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased more, compared to the amplitude of noise.

(a) (b)
Fig 28 (a). Comparison of the graph y(t) after the use of the FIR filter and Blackman window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased more, compared to the amplitude of noise.



Sample 5.

N = 400;
n = [0:N];
fm = 20;
fn = 200;
T = 0.001;

Voice: sin(2*pi*fm*n*T)
Noise: sin(2*pi*fn*n*T)

(a) (b)

(c) (d)
Fig 29 (a). Voice v(t) (b). Noise n(t) (c). Input signal = Voice v(t) + Noise n(t) (d). Fourier transformation
of x(t) to find magnitude |FX| in the frequency domain

(a) (b)
Fig 30 (a). Comparison of the graph y(t) after the use of the FIR filter vs the graph of the input signal. (b).
Comparison of the Fourier transform of noise removal output vs input signal. The amplitude of voice
decreased a little while the amplitude of noise notably decreased when noise removal process is executed.



(a) (b)
Fig 31 (a). Comparison of the graph y(t) after the use of the Hanning window vs the graph of the input
signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The amplitude
of voice increased while the amplitude of noise decreased drastically when noise removal process is
executed.

(a) (b)
Fig 32 (a). Comparison of the graph y(t) after the use of the FIR filter and Hanning window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 33 (a). Comparison of the graph y(t) after the use of the FIR filter and Bartlett window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



(a) (b)
Fig 34 (a). Comparison of the graph y(t) after the use of the FIR filter and Hamming window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.

(a) (b)
Fig 35 (a). Comparison of the graph y(t) after the use of the FIR filter and Blackman window vs the graph
of the input signal. (b). Comparison of the Fourier transform of noise removal output vs input signal. The
amplitude of voice increased while the amplitude of noise notably decreased when noise removal process
is executed.



Noise Removal Using Realistic Samples (*All graphs are from implementing MatLab)

Realistic Sample

(a) (b)
Fig 36 (a). Input signal = Voice v(t) + Noise n(t) (b). Fourier transformation of input signal to find
magnitude in the frequency domain

Voice Noise

(a) (b)
Fig 37 (a). Voice v(t) (b). Fourier transformation of voice v(t) to find magnitude in the frequency domain.

Only Voice

(a) (b)

Fig 38 (a). Noise removal output after the use of the FIR filter and Bartlett window. (b). Fourier transform
of noise removal output to find magnitude in the frequency domain.



(a) (b)

Fig 39 (a). Noise removal output after the use of the FIR filter and Blackman window. (b). Fourier
transform of noise removal output to find magnitude in the frequency domain.

(a) (b)

Fig 40 (a). Noise removal output after the use of the FIR filter and Hamming window. (b). Fourier
transform of noise removal output to find magnitude in the frequency domain.

B. Denoising of Bioimaging Using LPF (*Images are produced from student by using Paintbrush)

Magnetic Resonance Image is one of the most widely used technologies to detect, diagnose, and

study various diseases. The images produced by MRI are accurate, and clear, however, there exist some

drawbacks to the technology. In order for MRI to produce clear, and rich representations of the area

imaged, it takes a long production time. Time consumption is mainly caused by MRI’s use of every data

in spatial frequency.

To get the image from MRI, frequency has to be transferred to the image using mathematical and

computational transformations. An ample amount of the frequency data are obtained from an MRI

process; however, all the frequency information is not needed to determine the final image.



Figure 1. The process of the transformation from frequency data to image domain

Often, the process of transformation from the frequency domain to image domain requires time

because Inverse Fourier Transformation takes every frequency point to determine the final output image.

However, if a proper function is multiplied to K-space, it results in reduced domains of frequency, which

will be used to determine output images (Figure 2).

(a) (b)                                        (c)

Figure 2. Multiplying proper function(b) to K-space results in a reduction of frequency domain(a)

The purpose of the present research is to develop a more efficient low pass filter or filter function,

in order to increase the resolution of the image and, at the same time, decrease the time required to

produce the image.

The task of MRI  is to acquire a K-space image, then transform it into a spatial-domain image.

K-space is a matrix, which is composed of M rows and N columns, where kx is interpreted in real-time to

give N samples and ky is adjusted to M samples. This conversion of axes allows K-space in N-M matrix

to be converted into kx vs. ky plane, which can be used to create an image in an x vs. y plane. Therefore,

it is valid to say that an MRI image is the magnitude of the Fourier transform of the K-space image.

Figure 3. K-space is transformed into image space through Inverse Fourier Transformation, and vice versa



Magnetic Resonance Image Reconstruction from Raw Data

In order to produce the image domain from MRI, there is a complex computational process that

requires an intensive analysis. In Part A of this paper, K-space was constructed from an MRI image of a

human brain using MATLAB software.  Different proposed filters were applied on the full K-space in

order to find the most efficient filter, which can be used to produce the best MRI image. In Part B of this

paper, a sample brain image is constructed from a K-space provided from raw data from a patient. In this

experiment, 12 different K spaces were obtained from 12 corresponding coils. Multiplying the best filter

determined from Part A reduced the 12 K-spaces, and they were transformed to 12 images of a human

brain using Inverse Fourier Transform.  Finally, a comprehensive brain MRI image was obtained by

taking a Root Mean Square of 12 different MRI images.  The overall flowchart is shown in Figure 4 and

Figure 5.

Figure 4. Data before and after the Fourier Transformation
*MRI images are from MRI Research Lab in UIUC and others are drawn by Paintbrush



This paper presents the selectivity of proper K-space as shown in Figure 5 and Figure 6 by removing

different amounts of high or low frequencies to create the most optimal images.

Figure

5.    Find an efficient filter                                  Figure 6.  Test the filters obtained from Part A
*Images (A)-a,  (A)-d, (B)-d, and (B)-e  are from MRI Research lab in UIUC) and student using MatLab. Others(images on top) are from Google.

Filter Design (*Images are produced from student - by using Paintbrush)

Changing different variables in low pass filters can change the function produced over the image

domain. Originally, square functions are used during Fourier Transformations. However, various filters

were tested in creating images to find an efficient and proper filter.

● Rectangular Functions Applied on MxN K-space as LPF

Figure 7.  Multiplication of K-space and square function causes a reduction in the frequency domain

( Tested Rectangular function in the MATLAB: LPF(N/2-N/10:N/2+N/10)=1, AC=BC= N/10)

● Gaussian functions as LPF,  Y = exp(-((l-L/2).^2)/10^n)

● Circle equations as a filter, r = sqrt((x-M/2)^2+(y-N/2)^2)

● Proposed even function as a filter,   1-abs((x/(width/2)))^n



Results (*Original MRI was obtained from MRI Research lab in UIUC and graphs were obtained by using Matlab)

Part A.  K-space reconstruction using MRI image (nonconventional method)

In Part A of this paper, K-space was constructed from an MRI image of a human brain shown in

Figure 8 using MATLAB software.  Different proposed filters were applied on the full K-space in order

to find the most efficient filter, which can be used to produce the best possible MRI image.

Original MRI image

(Full K-space is used / No filter is used)

Figure 8. Original MRI image

Square function as LPF (*Original MRI was obtained from MRI Research lab in UIUC and graphs were obtained by using

Matlab)

Two different shapes of rectangular functions produced different MRI images as follows:

Figure 9. Narrow ({x|-15<x<15}) square function filter and its image

Figure 10. Narrow ({x|-30<x<30}) square function filter and its image



Figure 9 and Figure 10 showed that when a square function was used to construct the final image,

it caused the image to be blurry due to the ringing effect. A narrow square function as the low pass filter

caused the resolution of the image to decrease because the narrow low pass filter did not collect enough

information.

Gaussian function as LPF (*Original MRI was obtained from MRI Research lab in UIUC and graphs were obtained by using

Matlab)

Figure 11 is of using a narrow exponential function, or Gaussian function as a filter function.

y = exp(-((l-L/2).^2)/a^2), where L=2*7*N/40, N=557

Figure 11. Gaussian function (a=40) filter and its image

The final image on the right showed that a narrow exponential function was able to collect only

minimal amount of information, causing the resulting image to be deprived of the original details.

Multiplying the exponential function to K-space decreased the ringing effect, but the image lacked in

clarity due to a lower resolution.

Figure 12. Gaussian function (a=50) filter and its image



A wider Gaussian function was used in Figure 12. The wider width over the frequency domain

included more high-frequency points, thus, the image had more details, including clearer edges,

compared to the image in Figure 11.

Figure 13. Gaussian function (a=60) filter and its image

In Figure 13, the domain increased even more than that of Figure 12, thus, more information was

collected, which was used in producing a more detailed image. In this image, there was almost no ringing

effect; the image showed clear edges and other important details.



Proposed LPFs (*All graphs were produced from MatLab)

In this section, different types of graphs that can be potentially used as LPF were considered.

Powers with the fractions with an even numerator and an odd denominator are continuous throughout all

four quadrants. The equation is:

𝑥𝑛 + 𝑦𝑛 = 1  

When the power n is less than 1, the graph caves inwards. When the power n is greater than 1, the

graph curves outward, and finally, it becomes a rectangular-shaped graph as n becomes infinite.

(1) 𝑥
2
5 + 𝑦

2
5 = 1  

(2)  𝑥
4
5 + 𝑦

4
5 = 1  

(3)  𝑥
8
5 + 𝑦

8
5 = 1    

1                                    (4)𝑥
16
5 + 𝑦

16
5 =

(5) 𝑥
104

5 + 𝑦
104

5 = 1

Fig. 10. Proposed filter functions

A trend or pattern was found: Our computational simulation showed that if the graph becomes sharp or

pointed like 1, 2, or 3 in Fig. 14, the RA(Ringing Artifact) gets bigger so it does not seem desirable to use

them as LPFs. The equations (1), (2), (3) produce a lower quality of bio-images, whereas the equation (4)

produced the best quality of bio-images, so it will be used as the ideal LPF among the five equations

above.

If the graph becomes more rounded, it gets more information from the k-space and shows less of the

ringing artifact in bio-images. Usually, when the domain of the function becomes wider, the resolution of

the image produced becomes better, but the computer running time for the image process increases.



Appendix (*The matrix is obtained using MatLab)

k space

This is a portion of the sample matrix, taken 262~275 columns and 335~348 rows from the whole
365x557 matrix.  The Gaussian filter with p=40 was used to create the matrix in the image domain. This
sub-matrix is produced by sampling at the lower midpoints of the image domain, 365x557 matrix.(and
then it can be normalized using a technique). Note that the bottom left elements at around  [9, 3] have the
large values, which means bright in MRI image, and decreasing gradually as distance from that point
increases to the bottom right.

0 0 0 2 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 1 0 0 0 0 2 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 7 1 0 1 5 1 2 0 0 0 0
1 2 1 0 0 1 1 2 0 0 1 3 0 0
5 3 0 0 0 0 0 0 5 0 1 3 2 0
0 11 22 38 41 37 37 44 55 12 0 1 1 0
68 98 143 152 128 113 116 136 114 41 5 0 0 26
176 134 151 119 80 80 63 80 138 107 48 19 48 84
160 116 61 30 22 52 14 10 73 132 56 34 87 50
130 80 13 0 0 22 0 0 3 37 14 5 28 9
33 14 2 2 8 5 0 2 8 0 3 6 0 6
0 0 3 0 8 1 0 0 4 0 2 2 0 2
5 4 1 0 0 0 4 1 0 6 1 0 7 3

Discussions and Conclusions

A. Acoustics: Denoising Sound Algorithm

A combination of a low pass filter and windows effectively removed the noise from the audio files.

Low pass filters reduced the amplitude of noise, while the windows enhanced the amplitude of pure

signals. The combination of the filter and window amplifies the pure sound and diminishes the noise,

emphasizing the pure signal. The effectiveness of noise removal depends on the frequency of the original

sound file and the noise. As the difference between noise and sound is greater, the noise reductions

become more effective, even filtering completely inaudible sound files into intelligible signals. The

combination of filter and window does reduce the noise of the sound file when the difference between

noise and sound is insignificant, but it is less efficient.



Because this study focused on the higher frequency noise, removing lower frequency noise should

be determined. While the windows examined in this research, Hanning, Bartlett, Hamming, and

Blackman window, were efficient to an equivalent extent, the difference in each of their characteristics in

the noise removal process should be determined thoroughly.

B. Denoising the Bioimage

Many filters are good at reducing the size of K-space, but most of the filters had the ringing effect,

which blurred the sharp "edges" of the images as a side effect. In this research, new experiments were

carried out with several modified filters to reduce the ringing effect and improve the resolution of an MRI

image to a degree. The data produced finally proposed an efficient function as a new filter.

1.   The proposed filter is different from the rectangular (square) function, Gaussian function, and

circle function, but the trial and error method was done on the new filter to confirm that it encompasses

all the advantages or properties of the 3 functions.

2.  The best efficiency occurred when the exponent n in the proposed filter equation is in between 2

and 10, but a new algorithm is needed to find the exact number since numbers can exist in other forms

other than integers.

3. A vast raw data that was collected from a patient was tested to create 12 sub-images using the

proposed filter. The final image was constructed successfully using the coordinate transformations and

the least square method. As other methods are also possible to visualize the image, it is desirable to

compare the methods to each other.
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