
 Note: This is the introduction to my research paper. I am still in the process of
 writing the entire paper and incorporating my results as I have recently finished
 my data analysis. The paper is required in the application form, so I am
 submitting what I have so far.

 Training Neural Networks with a Genetic Algorithm for Obstacle Avoidance
 in Simulated Autonomous Drones

 Will Baumgartner

 1. Introduction

 The use of unmanned aerial vehicles (UAVs; or drones) for a wide variety of applications

 has become increasingly popular over the last few years. Along with this, machine learning has

 become a more viable solution for controlling autonomous machines.

 One application where autonomous UAVs have been proved viable is afforestation and

 reforestation. UAVs are viable for this task due to their speed, scalability, cost effectiveness, and

 safety. UAVs can also be remotely controlled, take autonomous flying paths around obstacles

 using aerial and satellite data, have more mobility and precision, and have cheap maintenance

 and usage costs (Mohan et al., 2021). In addition, UAVs could also be used for package delivery.

 UAVs can provide on-demand, inexpensive, and convenient access to nearby items, like

 medicine and groceries. UAVs are able to minimize cost and delivery time compared to their

 ground based alternatives. Their paths could even be optimized further, providing uniform

 network or surveillance coverage along the way to their destinations (Khosravi et al., 2019).

 To control the drones in this study, we

 utilize neural networks, specifically multilayer

 perceptrons (MLPs). MLPs take a set of input

 values and transform them into a set of output values, utilizing hidden layers with neurons as

 seen in Figure 1. Each node is connected to all of the nodes in the previous layer of the network,

 making MLPs fully connected neural networks. Each connection corresponds to a weight, and

 we sum the product of the previous nodes and their weights to get the value of the current node.

 Each node also has a bias, which is added to the product sum. We can easily model this using

 matrices and matrix products, multiplying the input vector by matrices of weights until we reach

 the output layer. The input values move forward through the model without looping back

 (recursion), so this is a feedforward neural network. Initially, the weights and biases are random,

 yielding nonsensical output for any given input. However, we can optimize these weights and

 biases to produce the output we are looking for, which is called training. There are many popular

 optimization methods, but in this study, we utilize a genetic algorithm. It has been shown that the

 use of a genetic algorithm can provide better results in some cases for training a feedforward

 neural network than the traditional techniques of backpropagation (Gupta and Sexton, 1999).

 A genetic algorithm is traditionally used to model natural selection within a simulated

 population. Here, we use a genetic algorithm to select for neural networks that control drones

 well, and to remove drones that are useless. To start, we initialize the neural networks with

 random weights and biases, each drone receiving one neural network controller. Some drones

 will perform better than others, but initially most are incapable. We score the drones’ fitness

 based on certain criteria (Do the drones hit anything? Do they make it to their target?), and

 eliminate a certain percentage of them that scored low. After this, we crossbreed the remaining

 successful drones to repopulate, combining weights and biases from randomly chosen parents.

 After we have a new population, we can perform simple mutation (randomizing a few of the

 weights and biases) on the new drones in order to get some variation. After running the

 simulation many times, the drones will slowly increase in capability, with the less fit drones

 dying off and the more fit drones producing even more fit children. Essentially, we are

 optimizing the neural networks to produce a drone that best fits the given criteria. The only

 control over the training we have is the fitness criteria, as well as various hyperparameters for the

 genetic algorithm. These hyperparameters dictate things like how many drones we eliminate

 each generation, how fast the neural networks mutate, and how many drones are in the

 population.

 In this study, we use a genetic algorithm to train autonomous drones equipped with neural

 network controllers in an attempt to optimize speed and obstacle avoidance. It’s easy enough to

 get a drone to stay up in the air, so this study focuses on the more complex task of making sure

 that there are no costly collisions between drones or with obstacles, and that the drones make it

 to their waypoints in a respectable amount of time. One study has similarly attempted to

 automate drone pathing to avoid obstacles by processing camera input with convolutional neural

 networks, which was very successful (Amer et al., 2017). Here, we also attempt to perform

 obstacle avoidance, but with positional information and intercommunication between drones

 rather than the limited information acquired from a camera. Another study has also utilized

 genetic algorithms, tuning PID controllers for drone flight and showing that genetic algorithms

 are more than viable for complex tasks like obstacle avoidance in drones (Elajrami et al., 2021).

 Another study similar to this one has employed a genetic algorithm to optimize the path of

 drones to provide the most amount of area coverage while using the least amount of energy. The

 optimized algorithm consumed 2-5 times less energy than that of a traditional greedy algorithm

 by reducing the number of turns while covering all the waypoints (Shivgan and Dong, 2017).

 Again, our study aims to optimize the path of autonomous drones using a genetic algorithm by

 minimizing collisions as well as travel time. It is hypothesized that the optimized drone control

 algorithm will result in a slightly slower time than the straight path algorithm, but result in much

 safer travel with extremely few collisions.

 Works Cited:

 Amer, K., Samy, M., Shaker, M., & Elhelw, M. (2021). Deep convolutional neural network based

 autonomous drone navigation. Thirteenth International Conference on Machine Vision .

 https://doi.org/10.1117/12.2587105

 Elajrami, M., Satla, Z., & Bendine, K. (2021). Ajr Drone Control using the Coupling of the PID

 Controller and Genetic Algorithm. Communications - Scientific Letters of the University of

 Zilina , 23 (3), C75–C82. https://doi.org/10.26552/com.c.2021.3.c75-c82

 Gupta, J. N., & Sexton, R. S. (1999). Comparing backpropagation with a genetic algorithm for

 neural network training. Omega , 27 (6), 679–684.

 https://doi.org/10.1016/s0305-0483(99)00027-4

 Khosravi, M., Enayati, S., Saeedi, H., & Pishro-Nik, H. (2021). Multi-Purpose Drones for

 Coverage and Transport Applications. IEEE Transactions on Wireless Communications ,

 20 (6), 3974–3987. https://doi.org/10.1109/twc.2021.3054748

 Mohan, M., Richardson, G., Gopan, G., Aghai, M. M., Bajaj, S., Galgamuwa, G. A. P.,

 Vastaranta, M., Arachchige, P. S. P., Amorós, L., Corte, A. P. D., de-Miguel, S., Leite, R. V.,

 Kganyago, M., Broadbent, E. N., Doaemo, W., Shorab, M. A. B., & Cardil, A. (2021).

 UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications. Remote

 Sensing , 13 (13), 2596. https://doi.org/10.3390/rs13132596

