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 1. Introduction 

 The use of unmanned aerial vehicles (UAVs; or drones) for a wide variety of applications 

 has become increasingly popular over the last few years. Along with this, machine learning has 

 become a more viable solution for controlling autonomous machines. 

 One application where autonomous UAVs have been proved viable is afforestation and 

 reforestation. UAVs are viable for this task due to their speed, scalability, cost effectiveness, and 

 safety. UAVs can also be remotely controlled, take autonomous flying paths around obstacles 

 using aerial and satellite data, have more mobility and precision, and have cheap maintenance 

 and usage costs (Mohan et al., 2021). In addition, UAVs could also be used for package delivery. 

 UAVs can provide on-demand, inexpensive, and convenient access to nearby items, like 

 medicine and groceries. UAVs are able to minimize cost and delivery time compared to their 

 ground based alternatives. Their paths could even be optimized further, providing uniform 

 network or surveillance coverage along the way to their destinations (Khosravi et al., 2019). 

 To control the drones in this study, we 

 utilize neural networks, specifically multilayer 

 perceptrons (MLPs). MLPs take a set of input 



 values and transform them into a set of output values, utilizing hidden layers with neurons as 

 seen in Figure 1. Each node is connected to all of the nodes in the previous layer of the network, 

 making MLPs fully connected neural networks. Each connection corresponds to a weight, and 

 we sum the product of the previous nodes and their weights to get the value of the current node. 

 Each node also has a bias, which is added to the product sum. We can easily model this using 

 matrices and matrix products, multiplying the input vector by matrices of weights until we reach 

 the output layer. The input values move forward through the model without looping back 

 (recursion), so this is a feedforward neural network. Initially, the weights and biases are random, 

 yielding nonsensical output for any given input. However, we can optimize these weights and 

 biases to produce the output we are looking for, which is called training. There are many popular 

 optimization methods, but in this study, we utilize a genetic algorithm. It has been shown that the 

 use of a genetic algorithm can provide better results in some cases for training a feedforward 

 neural network than the traditional techniques of backpropagation (Gupta and Sexton, 1999). 

 A genetic algorithm is traditionally used to model natural selection within a simulated 

 population. Here, we use a genetic algorithm to select for neural networks that control drones 

 well, and to remove drones that are useless. To start, we initialize the neural networks with 

 random weights and biases, each drone receiving one neural network controller. Some drones 

 will perform better than others, but initially most are incapable. We score the drones’ fitness 

 based on certain criteria (Do the drones hit anything? Do they make it to their target?), and 

 eliminate a certain percentage of them that scored low. After this, we crossbreed the remaining 

 successful drones to repopulate, combining weights and biases from randomly chosen parents. 

 After we have a new population, we can perform simple mutation (randomizing a few of the 

 weights and biases) on the new drones in order to get some variation. After running the 



 simulation many times, the drones will slowly increase in capability, with the less fit drones 

 dying off and the more fit drones producing even more fit children. Essentially, we are 

 optimizing the neural networks to produce a drone that best fits the given criteria. The only 

 control over the training we have is the fitness criteria, as well as various hyperparameters for the 

 genetic algorithm. These hyperparameters dictate things like how many drones we eliminate 

 each generation, how fast the neural networks mutate, and how many drones are in the 

 population. 

 In this study, we use a genetic algorithm to train autonomous drones equipped with neural 

 network controllers in an attempt to optimize speed and obstacle avoidance. It’s easy enough to 

 get a drone to stay up in the air, so this study focuses on the more complex task of making sure 

 that there are no costly collisions between drones or with obstacles, and that the drones make it 

 to their waypoints in a respectable amount of time. One study has similarly attempted to 

 automate drone pathing to avoid obstacles by processing camera input with convolutional neural 

 networks, which was very successful (Amer et al., 2017). Here, we also attempt to perform 

 obstacle avoidance, but with positional information and intercommunication between drones 

 rather than the limited information acquired from a camera. Another study has also utilized 

 genetic algorithms, tuning PID controllers for drone flight and showing that genetic algorithms 

 are more than viable for complex tasks like obstacle avoidance in drones (Elajrami et al., 2021). 

 Another study similar to this one has employed a genetic algorithm to optimize the path of 

 drones to provide the most amount of area coverage while using the least amount of energy. The 

 optimized algorithm consumed 2-5 times less energy than that of a traditional greedy algorithm 

 by reducing the number of turns while covering all the waypoints (Shivgan and Dong, 2017). 

 Again, our study aims to optimize the path of autonomous drones using a genetic algorithm by 



 minimizing collisions as well as travel time. It is hypothesized that the optimized drone control 

 algorithm will result in a slightly slower time than the straight path algorithm, but result in much 

 safer travel with extremely few collisions. 
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