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Abstract 

 

The substantial cost of new drug research and development has consistently posed a huge 

burden and tremendous challenge for both pharmaceutical companies and patients. In order to 

lower the expenditure and development failure rate, repurposing existing and approved drugs 

and identifying novel interactions between the drug molecules and the target proteins based on 

computational methods have gained growing attention. Here, we propose the DeepLPI, a novel 

deep learning-based model that mainly consists of ResNet-based 1-dimensional convolutional 

neural network (1D CNN) and bi-directional long short term memory network (biLSTM), to 

establish an end-to-end framework for protein-ligand interaction prediction. We first apply pre-

trained embedding methods to encode the raw drug molecular sequences in the form of 

SMILES strings and target protein sequences in the FASTA format into dense vector 

representations. The embedded representations of drug melocular and target proteins go 

through two ResNet-based 1D CNN modules to derive features, respectively. The extracted 

feature vectors are concatenated and further fed into the biLSTM network after average pooling 

operation, followed by the MLP module to finally predict protein-ligand interaction. We 

downloaded the well-known BindingDB dataset for training and internal independent testing 

our DeepLPI model. We further applied it on the Davis dataset and a COVID-19 dataset for 

externally evaluating the prediction ability of DeepLPI. To benchmark our model, we compared 

our DeepLPI with the state-of-the-art DeepCDA method towards protein-ligand interaction 

prediction. We observed that our DeepLPI reaches AUROC of 0.794, Sensitivity of 0.724, 

specificity of 0.749, PPV of 0.661, and NPV of 0.800 on the internal independent testing set. 

For the external evaluation on the COVID-19 dataset, we archived AUROC of 0.610, sensitivity 

of 0.538, specificity of 0.576, PPV of 0.110, and NPV of 0.928, respectively. We found that 

our DeepLPI outperformed DeepCDA in term of these assessment metrics, suggesting the high 

accuracy of the DeepLPI towards protein-ligand interaction prediction. The high prediction 



performance of DeepLPI on the different protein-ligand interaction datasets of BindingDB, 

Davis and COVID-19 displayed its high capability in generalization, demonstrating that the 

DeepLPI has the potential to pinpoint new drug-target interactions and to find better 

destinations for proven drugs. 
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DeepLPI: a novel deep learning-based model for protein-ligand interaction prediction 

for drug repurposing 

 

1 Introduction 

Introducing a new drug to the market has been characterized to be risky, time-consuming, 

and costly. Indeed, it may take 10 to 20 years, and more than 2 billion US dollars to develop a 

new drug as reported in 2018 [1][2]. Typically, the overall process of drug research and 

development is complicated by serval core steps [3], including (i) drug discovery, (ii) 

preclinical research, (iii) clinical trials, and (iv) FDA review, and (v) post-marketing safety 

surveillance. Particularly, drug discovery is the first phase starting with identifying targets of 

an unmet disease such as proteins, followed by creating and optimizing a promising compound 

that can interact with the targets efficiently and safely. This step usually involves hundreds and 

thousands of compounds, yet only about 8% of which as drug leads can enter the phase of the 

in vitro and in vivo preclinical research [4]. To shorten the duration and to improve success rate 

in the phase of drug discovery, drug repurposing has become a hotspot of new drug research 

and development over the past few years [1][5]. Drug repurposing, or drug repositioning, 

intends to find an effective cure of a disease from a large amount of existing and approved 

drugs that were developed for other purposes [1]. For example, prednisone was originally 

developed for the treatment of inflammatory diseases but it is likely to be effective against 

Parkinson's disease as well [6]. This method could potentially lower the R&D costs since the 

candidate drugs have already been proven to be safe. Therefore, the drug could quickly pass 

clinical trial phases [7]. In midst of all the drug repurposing methods, in silico computational-

based methods to screen pharmaceutical compound libraries and identify drug-target 

interactions (DTIs) or protein-ligand interactions (PLIs) have gained increasing attention and 

made significant breakthroughs thanks to the development in high performance of 

computational architectures and advances in machine learning methods.  

The identification of PLIs aims to study the binding affinity that measures the strength of 

protein-ligand interaction between a target protein and a drug compound. The binding affinity 

is usually represented in the form of the following constants that stand for inhibition (𝐾𝑖), 



dissociation (𝐾𝑑), and half-maximal inhibitory (𝐼𝐶50). Smaller values in the constants means a 

stronger binding affinity of a protein-ligand pair. Experimental methods dentifying the protein-

ligand interactions involve complicated quantum chemical calculation of molecular/biological 

structures. Thereby, those conventional methods did not enable to make use of the large-scale 

existing protein-ligand interaction databases for fast and efficiently screening and discovering 

candidate drugs for new disease.  

Over the last decade, a variety of machine learning-based models have been developed to 

identify PLIs from millions of ligands and proteins such as random forest (RF) based 

algorithm[8][9], SimBoost[10], and ChemBoost[11]. These methods were mainly built on 

human-selected features. The problem is that the generation of these features not only requires 

much domain knowledge but also possibly leads to a loss of the information about raw protein-

ligand interactions. The emergence of deep learning-based techniques and their successful 

applications have paved a promising way to discover new drugs, beyond applications such as 

computer vision or language processing.  

Deep learning-based models can automatically learn complex and highly abstract level of 

features from large-scale raw input datasets without extensive manual creation of features. For 

instance, MFDR[12] obtained features with auto-encoder from chemical structures and protein 

sequences and then employs SVM models to predict PLI as a binary classification problem. 

DeepDTA[13] applied two different CNNs modules separately to represent sequences of 

compounds and proteins as information modules. The resulting features then entered 3 fully 

connected layers to predict protein-ligand binding affinity. Yet, the use of a simple label 

encoding method in DeepDTA and MFDR to embed raw input sequences (i.e., representing 

symbols in raw sequences using corresponding encoded integers) may lose much information 

about raw sequences. Atomnet[14] and SE-OnionNet[15] utilized 3D structures of proteins and 

drug molecules to predict the drug-target binding affinity[16]. They may partly diminish the 

problem of losing information. However, those models' practicability and accuracy are limited 

due to the insufficient 3D protein structure data[17]. It is hard to obtain accurate 3D structure 

data for protein because it requires advanced experiment methods under harsh and extreme 

conditions[18], [19]. 



Here, we propose DeepLPI, an innovative deep learning-based model to predict protein-

ligand interaction using the simple formats of raw protein 1D sequences and 1D ligands (ie., 

drug molecular) SMILES strings as inputs, rather than manual-generated features or complex 

3D protein structures. SMILES, shorthanded for Simplified Molecular Input Line Entry 

System, is a well-known compact linear notation method for representing molecular structures 

based upon chemical rules [20]. We first respectively employ pre-trained models of 

Mol2Vec[20] and ProSE[21] to embed drug SMILES strings and protein sequences as numeric 

vectors. These embedded numeric vectors are then fed into two blocks, each of them consisting 

of two modules termed Head convolutional neural network (CNN) module and ResNet-based 

CNN module, to encode proteins and drug sequences, respectively. The encoded 

representations are concatenated into a vector and further fed into a bi-directional long short-

term memory (bi-LSTM) layer, followed by three fully connected layers. With a sigmoid 

function, the output of DeepLPI is transformed into a continuous value, representing the 

probability of binding/interaction of the input pair of protein and ligand. We download the 

BindingDB dataset[22] to train the DeepLPI model and internally independently evaluate its 

performance towards PLI prediction. We further applied the model on the Davis[27] dataset 

and a COVID-19 3CL Protease[30, 31] dataset for externally assessing the prediction ability of 

DeepLPI. To benchmark our model, we compared our DeepLPI with the start-of-the-art 

DeepCDA method towards protein-ligand interaction prediction on each of Binding DB, Davis 

and the a COVID-19 3CL Protease dataset. The prediction performance is quantativly 

represented in terms of area under the receiver operating characteristic curve (AUROC), 

sensitivity, specificity, positive (PPV), predictive value , and negative predictive value (NPV). 

The high performance of our DeepLPI towards protein-ligand interaction prediction suggests 

that our model has the potential to accurately identify protein-ligand interaction and hence, 

promote the new drug development. 

My research report is structured as follows. Section 2 describes the dataset and the 

DeepLPI model; section 3 illustrates the results of the protein-ligand interaction prediction 

using the DeepLPI; and I discuss the current study and draw the conclusion in section 4 and 

section 5, respectively. 



2 Methods 

2.1 Dataset and data preprocessing 

We use the BindingDB[22] and Davis[27] datasets to train and evaluate (both internally 

and externally) our DeepLPI model. We also use the COVID-19 3C-like Protease dataset from 

Diamond Light Source [30, 31] for further assessment. All datasets are publicly accessible. The 

BindingDB is a continually updating database that contains 2,278,226  experimentally 

identified binding affinities between 8,005 target proteins and 986,143 small drug molecules 

up to July 29, 2021. We first apply the following criteria to compile the dataset for the 

development of our model (Figure 1): (1) excluding binding interactions with multichain 

protein complexes because it is not capable of identifying which chain of the protein interacts 

with the molecular; (2) retaining binding interactions only represented by 𝐾𝑑  value and it 

means that other measurements in the form of  𝐼𝐶50 or 𝐾𝑖 values are removed; (3) keeping 

common drug molecules and target proteins occurring in at least three and six interactions in 

the entire dataset [11], respectively; (4) removing data with invalid 𝐾𝑑 values and removing 

duplicated data entries. For example, we notice that some data used ">" and "<" in the labeled 

values to indicate ranges, so directly exclude them for the subsequent analysis. Additionally, 

there are some zeros in the values which should not appear based on the definition of binding 

affinity measurement of 𝐾𝑑. Thus, we treat them as invalid values and simply removed them; 

(5) As a binary classification problem in this study, we label 1 representing a pair of protein 

and ligand being binding/interaction if their corresponding 𝐾𝑑 value less than 100 nM or 0 

otherwise according to the work of DeepCDA [29]. As a result, a total of 36,111 interactions 



with 17,773 drug molecules and 1,915 protein targets are finally used in developing our model. 

 

Figure 1 Preprocessing of BindingDB dataset. Data exclusion criteria to compile BindingDB 

dataset. 

 

The reason for choosing 𝐾𝑑 rather than other binding measurements is for enabling our 

trained model to externally evaluate on Davis testset, which contains interactions of 442 unique 

proteins and 68 unique compounds. The Davis dataset only reports 𝐾𝑑 values of the kinase 

protein family and the relevant inhibitors. We used the same protocol to obtain the class label 

as we did above. The Davis dataset was referenced from the Davis work [27] and downloaded 

from the URL therein. All binding affinity values are only measured in 𝐾𝑑 . The dataset 

contained duplicated data entries where the drug-protein pairs are the same but the binding 

affinity values are different, potentially due to the experiment conditions. We keep only one 

entry in each group of duplicates. This doesn't affect the balance of the dataset because 

according to our binary threshold, all data entries in the same duplicate group in fact have the 

same binary label. After the treatment, there are 24,548 interaction data entries. We split them 

into training, validation, and testing sets according to the same method described above.  



In an attempt to find effective drugs for SARS-CoV-2, we applied our model on a COVID-

19 dataset where 879 small molecule drugs were tested on the SARS-COV-2 3C-like protease. 

The experiment measured EC50 results. For classification, we label 1 to indicate drug-protease 

active if EC50 is less than 30 nM [31] or 0 representing inactivity. The data is retrieved from 

a large XChem crystallographic fragment screen against SARS-CoV-2 main protease at high 

resolution from MIT AiCures. [30] Among those data, 78  are considered to be active 

according to the threshold.  

 

Figure 2 Split the whole dataset into a training set (83%  of whole interactions) and an 

independent testing set (17%) for training and evaluating the model, respectively. The training 

set is further divided into the training subset (75% ) and the validation set (8% ). The 

independent testset was further splitted into for parts. Part I: the drug or protein information is 

separately included in the training set but not their pairs. Part II: the drug information included 

in the training set but not the protein. Part III: the protein information is included in the training 

set but not the drug information. Part IV: neither of drug or protein information is included in 

the training set.  

 

We then randomly select 83% of the pre-processed BindingDB dataset as the training set 

and the remaining 17%  as the internal independent testing set to train and evaluate our 

DeepLPI model (Figure 2). In order to optimize hyperparameters, we further allocate 10% of 

the training set for validation during the training phase (i.e., 8% of all data), and the rest are 

used as a training subset (i.e., 75% of all data). The internal independent test set was divided 

into four parts. Part I: the drug or protein information is separately included in the training set 



but not their pairs. Part II: the drug information included in the training set but not the protein.  

Part III: the protein information is included in the training set but not the drug information. Part 

IV: neither of drug or protein information is included in the training set. 

 

2.2 Model Design 

2.2.1 Overview of DeepLPI model 

The proposed DeepLPI consists of eight modules (Figure 3), including two embedding 

modules, two head modules, two ResNet-based CNN modules, one bi-directional LSTM 

(biLSTM) module, and one multilayer perceptron module (MLP). DeepLPI employs raw 

molecular SMILES strings and protein sequences as inputs, which are first represented as 

numeric vectors by two embedding modules, respectively. The embedded vectors for the drug 

SMILES and the protein sequences are then fed into the respective head module and ResNet-

based CNN module to extract features. The feature vectors for the inputs of drug molecules and 

protein targets are concatenated, pooled (max-pooling operation), and then encoded by a bi-

LSTM layer. Subsequently, the encoded vectors are finally fed into an MLP module and the 

final output is passed through a sigmoid function for binary classification to predict 

binding/non-binding labels. 



 

Figure 3 The overview of the DeepLPI model flow. 

2.2.2 Embedding module  

To utilize the raw drug molecular SMILES string and protein sequence as inputs to the 

DeepLPI model, we firstly encode them into numeric vector representations using the pre-

trained embedding models called Mol2Vec[20] and ProSE[21], respectively. Mol2Vec is an 

unsupervised deep learning-based approach to convert a molecule into a numeric vector 

representation. Inspired by natural language processing (NLP) techniques, Mol2Vec regards 

the molecular substructures obtained by the Morgan identifier [23] as "words" and the 

compound as "sentences", and then encodes them into dense vector representations based on a 

so-called corpus of compounds. The basic workflow and embedding principle is illustrated in 

Figure 4. 



 

Figure 4 Embedding principle of (A) Mol2Vec for drug molecule from reference [20] and (B) 

ProSE for protein from reference [21].  

 

On the other hand, the ProSE is a deep learning-based method developed to represent 

protein sequences into numeric vectors that encode protein structural information. It first 

translates a protein sequence into a list of specific alphabets (as a "sentence") which map similar 

amino acids (as "words") into close numbers. Then, the ProSE model encodes the words into 

numeric vectors.  

We utilize the pre-trained Mol2Vec (download link: https://github.com/samoturk/mol2vec) 

and ProSE (download link, https://github.com/tbepler/prose) to obtain vector representations 

with a fixed length for the drug molecular compound and protein, respectively.  

2.2.3 Head module and ResNet-based CNN module  

Head modules extract features from inputs. After the embedding, we separately feed the 

drug molecular SMILES string vector and protein sequence vector each into the head modules 

with the same network architecture. The head module contained the following layers: 1D 

convolutional, batch normalization, nonlinear transformation (with the rectified linear unit, i.e., 

ReLU activation), dropout, and max-pooling. Subsequently, two ResNet-based CNN modules 

are connected to the corresponding head module to further encode the information of input. 

Similar to the head module, the two ResNet-based CNN modules had the same network 

architecture. Specifically, each ResNet-based CNN module consists of three consecutive 

ResNet-based blocks, and each block comprises two branches, where the right branch is known 



as "shortcut connection"; and the left branch is known as a residual network that contains 

several stacked layers, including a 1D convolutional layer, a batch normalization layer, a ReLU 

layer, a dropout layer, another 1D convolutional layer, and one more batch normalization layer 

in sequence. Suppose 𝑥 is the input into a ResNet-based block, the output of stacked layers is 

called residual, denoted as 𝐹(𝑥), we then calculated ResNet-based block output with equation 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 [24]. 

2.2.4 biLSTM module and MLP module 

In the bi-LSTM module, we first concatenate the outputs of features extracted by the 

aforementioned two ResNet-based CNN modules, following with a average-pooling layer. The 

bi-LSTM, which stands for bidirectional long short-term memory, can learn long-term 

dependency from inputs. The LSTM network is a widely used RNN (recursive neural network) 

model, typically consisting of a list of memory blocks called Cells. Each Cell sends the cell 

state and the hidden state to next neighbor as memory. A Cell in an LSTM has three "gates", 

including (i) the forget gate to remove useless information from the cell state by performing a 

sigmoid function; (ii) the input gate which adds information to the cell state; and (iii) the output 

gate to further filter and select information from the current cell state, and finalize the hidden 

state as an output of current Cell. Bi-LSTM network processes the input twice, once from 

starting to the end and once the reverse way. With this process, the network can keep 

information from the past and future. To this end, it can both keep the information of molecular 

when extracting from protein and the protein information when extracting the molecular once. 

Finally, the output from each Cell on each side of bi-LSTM will be combined as the output 

vector.  

In the MLP module, we flatten the output vector of bi-LSTM and fed it into a stack of 

consecutive layers for processing. Finally, the output is passed through a sigmoid function for 

binary classification to predict binding/non-binding labels. 

2.3 Loss function 

We treat the prediction as a classification task, predicting whether the drug and protein 

will bind or not, and therefore we choose the Binary Cross Entropy loss function, implement in 

PyTorch as BCELoss. The L2-norm regularization is added into the loss function through the 



optimizer. For the 𝑛  pairs of molecular SMILES strings and protein sequences the loss 

function of the DeepLPI model was given by:  

Loss = −
1

𝑁
∑ [𝑦𝑖 ⋅ log(𝑦̂𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦̂𝑖)]
𝑁
𝑖=1⏟                            

BCE loss

+ 𝛼‖𝑊‖2
2

⏟    
L2−norm regularization

    (1) 

where 𝑦𝑖 ∈ {0,1} is class label representing whether or not binding interaction of a input pair 

of protein and ligand sequences 𝑖. 𝑦̂𝑖  is the probability of interaction prediction for the input 

pair 𝑖 by our model, 𝑦̂𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
, 𝑥 is the output of the MLP module of our 

model. 𝑊 is the trainable weight matrix in our model. 𝛼 is decay rate and we set it as 0.8 in 

this study. 

2.4 Evaluation metrics 

We calculate five metrics including area under the receiver operating characteristic curve 

(AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) to evaluate the performance of our model. The latter four metrics rely on 

calculation of a confusion matrix first. The definitions of latter four metrics are as follows: 

•  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = TP / ( TP + FN )  (2) 

•  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = TN / ( TN + FP ) (3) 

•  𝑃𝑃𝑉 = TP / ( TP + FP ) (4) 

•  𝑁𝑃𝑉 =TN / ( FN + TN ) (5) 

where 𝑇𝑁, 𝐹𝑁, 𝑇𝑃, 𝐹𝑃 refer to the number of true negative, false negative, true positive and 

false positive.  

 

2.5 Experiment setup 

Model training was done in Aliyun Cloud Computing. The node CPU used Intel(R) 

Xeon(R) Platinum 8163 (2.50GHz). An Nvidia Tesla T4 GPU is supplied. The sources code is 

available on Github. The model is implemented using the PyTorch library (version 1.8.1). The 

source code of training and evaluating DeepLPI and the requirements are available on GitHub 

(https://github.com/David-BominWei/DeepLPI). 



3 Results and Discussion 

3.1 Distribution of data 

The median (standard deviation, [minimum, maximum]) lengths of drug molecular 

SMILES strings and protein sequences are 52 (45.81, [1, 760]) and 445 (456.1, [9, 7096]) 

(Figure 5A and 5B).  

Figure 5 Distribution of BindingDB data used to develop the DeepLPI model. (A) Distribution 

of the 𝑝𝐾𝑑  values and the threshold for determining binding/non-binding. (B) distribution 

interaction in binary classes (C) Distribution of lengths of drug molecular SMILES strings. (D) 

Distribution of lengths of protein sequences.  

3.2 Parameters setting for training DeepLPI 

We use Kaiming Initialization to initialize DeepLPI network weights [25]. The Adam 

optimizer[26] is also employed with default parameters of 𝛽1 = 0.9 and 𝛽2 = 0.999 as an 

optimization algorithm to train our model. Furthermore, we use a batch size of 256 and initialize 

the learning rate at 0.001 with a decay rate of 0.8 for every 10 epochs. The maximum 

number of epochs is 1000 epochs. All settings for the parameters implemented in our DeepLPI 

model are demonstrated in Table 1. It should be noted that we use the default parameter values 



for the pre-trained Mol2Vec and ProSE, and we yield vector representations with a fixed length 

of 300 for the drug molecules, and two lengthes of 100 and 6,165 for the target proteins. 

Generally, we manually tune and optimize the hyperparameters of the DeepLPI network, and 

empirically chose the number of blocks in the ResNet-based module. 

 

Table 1 The parameter settings for the DeepLPI 

  Drug compounds Target proteins 

Modules Parameters Value Value 

Head Module Number of kernels 32 32 

Kernel size 7 7 

Stride  2 2 

Padding 3 3 

ResNet-based 

CNN module  

Number of kernels [32,32], [16,16], [16, 16] [32,32], [16,16], [16, 16] 

Kernel size [3,3], [3,3], [3,3] [3,3], [3,3], [3,3] 

Stride 1 1 

Padding 1 1 

Max Pooling 

1D 

Kernel size 2 2 

Stride 2 2 

Average 

Pooling 1D 

Kernel size 5 

Stride 3 

biLSTM 

module 

Input size 538 

Hidden size 64 

Number of layers 2 

Bidirectional  True 



MLP module Number of neurons  [2048,512,32] 

Common 

parameter 

setting for all 

modules  

Dropout 0.3 

Weight initialization  Kaiming 

Optimizer Adam 

Batch size  256 

Learning rate (LR) 0.001 

Weight for L2-norm 

(𝛼) 

0.0001 

LR decay rate 0.8 

 

3.3 Training and evaluation results 

3.3.1 BindingDB Dataset 

After iteration of 90 epochs, we found that the validation loss stopped to decrease, hence 

we stop the model training procedure. Training beyond this point would lead to apparent 

overfitting marked by increase of the validation loss. We also calculate the AUROC metric 

values during the model training, which achieve 0.97 and 0.89 for the training and validation, 

respectively (Figure 6).  



  

Figure 6 The loss and AUROC score during the DeepLPI training on the BindingDB dataset. 

(A) Loss scores for training and validation. (B) AUROC scores for training and validation 

We applied the trained model on the independent testset constructed from BindingDB 

dataset. We used Youden's J statistic to determine the optimal classification threshold instead 

of using default value of 0.5 (Figure 7A), which was used for later calculation of confusion 

matrix metrics (Figure 7B-F). The AUROC measured for the model performance on the 

independent testset is 0.794. 

  

Figure 7 The prediction performance of the final DeepLPI model. (A) The ROC curve and 

determied optimal threshold. (B) Confusion matrix based on the optimal threshold. (C) – (F) 

Confusion matrix and performance metrics on the four parts of the testset.  



We observe that the DeepLPI model obtain high accuracy with AUROC 0.877 on the 

"Both seen" testset where the drug molecule or the protein sequence but not the drug-protein 

pair information are included in the training set. When the training set has only partial 

knowledge of the testset, in testsets "Molecule unseen" where none of the drug molecules are 

included and in the "Protein unseen" testset where none of the protein sequences are included, 

the accuracy decreases to AUROC 0.857 and AUROC 0.718. When the training set has no 

knowledge of the testset, in testset "None seen", the accuracy reduces to 0.655.  

Table 2. Comparing Performance of DeepLPI model and DeepCDA model on internal 

independent testing set from the BindingDB data. 

BindingDB AUROC Sensitivity Specificity PPV NPV Remark 

Our 6165 0.790 0.684 0.773 0.671 0.783 

 

Our 100 0.751 0.541 0.818 0.668 0.725 

 

DeepCDA 0.448 0.000 1.0 Nan 0.596 All nonbinding 

In Table 2, we list the performance metrics of two versions of our models and the state-

of-the-art DeepCDA model on internal independent testing set from the Binding DB data. 

DeepLPI-6165 and DeepLPI-100 use a 6165-dimensional and 100-dimensional vector for 

protein embedding, respectively. The longer vector embedding is slightly better than the shorter 

embedding method in terms of AUROC value metric. Both models are significantly better than 

the DeepCDA model. On the AUROC metric, DeepLPI performance is 76% better than 

DeepCDA, but in fact, DeepCDA is even worse than the number suggested. Its predictions on 

the independent test set yield all nonbinding results.  

3.3.2 Evaluation on Davis dataset 

After iteration of 40 epochs, we found that the validation loss stopped to decrease, hence 

we stop the model training procedure. Training beyond this point would lead to apparent 

overfitting marked by increase of the validation loss. We also calculate the AUROC metric 

values during the model training, which achieve 0.98 and 0.91 for the training and validation, 

respectively (Figure 8).  



 

Figure 8 The loss and AUROC score during the DeepLPI training on Davis dataset (A) Loss 

scores for training and validation. (B) AUROC scores for training and validation 

We applied the trained model on the independent testset constructed from Davis dataset. 

We used Youden's J statistic to determine the optimal classification threshold instead of using 

default value of 0.5 (Figure 9A), which was used for later calculation of confusion matrix 

metrics (Figure 9B-F). The AUROC measured for the model performance on the independent 

testset is 0.791.  

 

Figure 9 The prediction performance of the final DeepLPI model. (A) The ROC curve and 

determied optimal threshold. (B) Confusion matrix based on the optimal threshold. (C) – (F) 

Confusion matrix and performance metrics on the four parts of the testset.  



We observe that the DeepLPI model obtain high accuracy with AUROC 0.844 on the 

"Both seen" testset where the drug molecule or the protein sequence but not the drug-protein 

pair information is included in the training set. When the training set has only partial knowledge 

of the testset, in testsets "Protein unseen" testset where none of the protein sequences are 

included but all molecules are included, the accuracy decreases to AUROC 0.812. When the 

training set has no knowledge of the testset, in testset "None seen", the accuracy reduces 

to 0.692. The testset "Molecule unseen" where none of the drug molecules are included does 

not follow the above trend. The training set has partial knowledge about the proteins in this 

testset, but its accuracy AUROC is the lowest at 0.692. The reason could be the specific drug 

molecules in the random choice and the accuracy might increase if more randomly selected 

testsets are tested and the calculate the statistics of the accuracy.  

Table 3. Comparing Performance of DeepLPI model and DeepCDA model on Davis dataset 
 

AUROC Sensitivity Specificity PPV NPV Remark 

Our 6165 0.791 0.661 0.789 0.132 0.980 

 

Our 100 0.731 0.534 0.794 0.480 0.826 

 

DeepCDA 0.741 0.511 0.813 0.495 0.823 

 

 

On Davis dataset, our DeepLPI-6165 model is 6.7% better than DeepCDA model, scored 

a 0.05 increase in AUROC metric value (Tables 3).  

3.3.4 Evaluation on COVID-19 

The as-trained models on BindingDB dataset are directly applied without any fine-tuning 

to predict the COVID-19 dataset for transferability study. DeepLPI outperformes DeepCDA by 

50% better AUROC metric value, and DeepCDA can not produce meaningful predictions on 

the COVID-19 external dataset since it produces on nonbinding predictions.  

 

Table 4. Comparison of DeepLPI and DeepCDA on transferring BindingDB trained model to 

COVID-19. 



 

AUROC Sensitivity Specificity PPV NPV Remark 

Our 6165 0.610 0.538 0.576 0.110 0.928 

 

Our 100 0.473 0.692 0.332 0.092 0.912 

 

DeepCDA 0.400 0.000 1.000 nan 0.911 All nonbinding 

 

3.4 Discussion and Future Work 

In our work, we successfully build a model called DeepLPI based on deep learning to 

predict DTI in classification tasks with 1D information from protein and drug molecules. We 

first utilize the pre-trained embedding methods called Mol2Vec and ProSE to encode the raw 

drug molecular SMILES strings and target protein sequences respectively into dense vector 

representations. Then, we feed the encoded dense vector representations separately into Head 

modules and ResNet-based modules to extract features, where these modules are based on 1D 

CNN. The extracted feature vectors are concatenated and fed into the bi-LSTM network, further 

followed by the MLP module and eventually through a Sigmoid function to finally predict 

binary binding or non-binding based on Kd affinity labeled data. We used the BindingDB 

dataset to train and evaluate our DeepLPI model, and the evaluation results can demonstrate 

that our model has a high performance on the prediction. 

Unlike methods to pre-define features that are heavily relied on domain knowledge such 

as SimBoost [10] or to represent sequences simply using sparse encoding approach such as 

DeepDTA [13], our new method, DeepLPI, applied pre-trained embedding models to encode 

the raw drug SMILES string and target protein sequences. These embedding models are trained 

using a huge dataset with consideration of structure information of molecule and target proteins 

to ensure that they are highly informative and efficient for feature encodings, which lead to 

dense vector representations. Such a representation is a semantic context embedding. It ensures 

similar sequences are not far apart in the representation space. It is admired that there exists a 

variety of embedding methods to encode drug compounds and protein sequences, we picked 

Mol2Vec and ProSE to be used in the DeepLPI due to past experience. We use 1D CNN in our 

DeepLPI model. In the 1D convolutional (Conv1D) operator, the kernel slides along a one-



dimensional axis and extracts key features from the local region that was overlapped by the 

kernel. The 1D CNN can retain the sequential correlation. Therefore, it is widely applied in the 

information layer of sequence data. We adopt a ResNet-based module in the DeepLPI. 

Traditional feed-forward CNN may lose useful information as the design grows deeper. 

Nevertheless, ResNet-based CNN can mitigate this drawback by developing a "shortcut 

connection" for the network. As a consequence, data inputted into the ResNet-based CNN 

module can be added with the residual of the network to alleviate the loss of information. The 

bi-LSTM is employed in the DeepLPI model, which can capture long-term dependencies of the 

sequence, equally encode input sequence once from beginning to end and once from end to 

beginning. Compared to the classical LSTM, the biLSTM enables the use of the two hidden 

states in each LSTM memory block to preserve information from both past and future.  

 During the computer experiments, we notice that the performance of DeepLPI is not 

uniform on different proteins: There might exist some common biological features of those 

proteins, such as the sequences or the spatial structures. Detailed analysis of the shared features 

of the proteins requires a deeper understanding of the protein-drug interaction and can 

potentially explain why the model behaves well on some of the proteins. Such analysis would 

be useful to improve the model when we generalize the results later.  

 The DeepLPI model may help in speeding up the COVID-19 drug research. As of today, 

the pandemic is not showing any sign of slowing down and people are still searching for an 

effective and safe cure for COVID-19 patients. The current widely-used combination treatment 

with hydroxychloroquine and azithromycin has not been proven to be satisfactory, and there 

are some research efforts in using computational, especially deep neural network, techniques 

for searching the effective repurposed drugs. Our model can be useful in speeding up the drug 

search and potentially increase the success rate because the training data fed into the model is 

not limited to the protein structural information. 

 Even though we have successfully built a model that can predict binding/non-binding 

interaction with high accuracy, the model still gets some limitations. There is still room for 

improvement regarding the prediction accuracy, especially when the model is applied on 

external datasets. From a broader perspective, the study of repurposing drugs should not be 

limited only to the binding affinities. Researchers should also pay attention to the possibility of 



potential adverse effects of using the repurposed drug. This can be a result of new interactions 

between the drug and the proposed disease target, or because the drug is administered to a new 

group of population. Sometimes the repurposed drug could have interactions with traditional 

drugs on the new disease, and adverse effects might also arise from such unexpected 

interactions. Deep learning methods could also be used in studying on these aspects for better 

safety.  
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