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Duchenne muscular dystrophy (DMD) é
disease overview ‘

" DMD is a rare, severe, progressive genetic  Figure 1: Duchenne's Impact on the Body
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Duchenne muscular dystrophy (DMD) %
gene overview 7

® DMD: One of the largest known human gene, spanning 2.4 Mb genomic sequence.
® DMD gene consists: 79 exons encoding a 14,000 bp messenger RNA transcript.

® DMD patients: Protein translation is stopped prematurely.

» Frame-shifting mutations (e.g. deletion of exons 47-50, Figure 2-A, top panel)
* Lead to inclusion of aberrant amino acids
» Generally premature truncation of translation.

> Alternatively, a point mutation (nonsense mutation)
« Can change an amino acid codon into a stop codon (Figure 2-B, bottom panel)

Figure 2: Schematic depiction of dystrophin transcripts in healthy and DMD
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Reference source: Annemieke Aartsma-Rus et al, J Med Genet, 2016 Mar, 53(3):145-51



Dystrophin protein and dystroglycan é
complex overview

® Full length of dystrophin protein consists of 3,685 amino acids with 427 kDa.

® |t consists of four major functional domains: actin-binding Nterminal domain (encoded
by exon 1-8), central rod domain (encoded by exon 8-61), cysteine-rich domain
(encoded by exon 62-69) and C-terminal domain (encoded by exon 69-79).

®  Cysteine-rich domain
together with C-terminal
domain interact with
different proteins including
B-dystroglycan, syntrophin
and dystrobrevin to make up
dystrophin-glycoprotein
complex.

Figure 3: Dystrophin and dystrophin-associated

glycoprotein complex
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Research objectives and workflows

2

“

® Carry out a systematic analysis of the DMD genetic variants via dbSNP database

® Explore protein-protein interactions for genetic modifiers identified in DMD patients

® Investigate potential relationships of genetic alternations in the DMD gene with cancer

Figure 4: Research workflows
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Research materials and methods
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“

® Extract DMD genetic variants via dbSNP Database with variant call format (VCF)

® Functional annotation with WANNOVAR: Variant prioritization (Figure 5)

® Retrieve the longest transcript ENST0000035703 (Figure 6)

Figure 5: Genomic catalog in DMD gene
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Figure 6: R coding for the longest transcript
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Research materials and methods é

“

" Protein—protein interactions (PPI) map for genetic modifiers identified in DMD
patients was constructed using STRING v11. Subsequently analyzed using Cytoscape
3.8.1 plugin Network Analyzer.

® Genetic alternations in the DMD gene with cancer was examined by using cBioPortal.

» Data from 25 published TCGA cancer studies and 4 pediatric cancer studies that
included a minimum of 100 samples. One study that reported 43
rabdomyosarcomas cases has also been included.

» Total 11927 patients (age from ~ 3 years to 90 years; ~ 48% male and ~ 46%
female; ~ 60% White, ~7% black or Africa America and ~ 5% Asian).

» Kaplan-Meier curves were stratified by genotype and comparisons were tested
using the Log-rank test.



Variants type and frequency of amnio acid
change in the DMD gene
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Table 1: Examples of DMD gene mutation

fmﬂeshrﬁ frameshift insertion ﬁmﬂ,e mfﬁ nﬂn,i‘rmn:‘.' shift nm:lﬁ'mn.:.'sh:ﬁ mﬂm?m?mﬁ stopgain nonsynonymous || synonymous

deletion substitution deletion insertion substitution

Ref Akt | mef i AR Ref | At | Ref Ak | Refi Al | Ref i At | mef |Alt Ref Alt | mef Alt
A - - A GGT  ARAC ||CTT i- |- TTATACGG|GCC AAT A T A iC G T
AAAGACTTC: - | ARAC TCCAAAG iCC  ||ACTGAT TGA ’ G A T iC T iC
AACGGGACE- |- iACCATGTGAG ||TT A |AGG - ATC G iC G A I |
AACTGTCT :- | AGAL ’ GTT | ACA - TTAC [|A e G A
AG - AT AGA 4 T A A iC T iC
ATAA ’ iC GGACGA | C T T iC T G

** Ref: Original nucleotide(s) present before mutation
Alt: Alternative nucleotide(s) present after mutation

Insertion, deletion,

substitution that cause
frameshift changes in
protein coding sequence.

" The largest category:
nonsynonymous, follow by

synonymous and
stop gain.

Figure 7: Frequency of amnio acid change in DMD gene

e

frameshift deletion

frameshift insertion

frameshift substitution

nonframeshift deletion

nonframeshift insertion

nonframeshift substitution

stopgain
synonymous SNV

Total unigque samples -_ Toat!

nonsynonymous SNV
startloss

Count and Percentage
of High frequencoy

116 3.20% AnChange
= 1500 G- = B s1al a17se
3 0.0aZs4 C——=T I S61 15%a5
T —=C I s3b| a1s%
27 0.74% ER— [ WETE 894
4 0.11% C——= B | 259 T
G- = B == 594
1 0.03% T——=n Pl zos 554
2322 04.02% |c--=G Bl ais> 524
T--=G Bl ars 594
1 0.03% G--=T Bl 177 584
242 6.67%% n =T [l 2100 3%
N ] 93 3%4%
S other B | 211 6%

| =627




Distribution of SNPs by exonic region é

by

® SNPs distributed across almost all exons. Exon 79 is the longest with 2703 bp in length.
Exon 78 is the shortest with 32 bp

®" Normalized exon length, then Exon 19 has most density of pathogenic SNP distribution.

Figure 8: Exon 78 and Exon 79 length example of DMD gene ENST00000357033
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Figure 9: ClinVar classification VS Exon frequency for DMD Transcript ENST00000357033
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Distribution of SNPs by ACMG-AMP classifications é

®" Nonsense mutation (i.e. stopgain) or frameshift mutation likely lead to more pathogenic.

® Observed a few cases with synonymous mutation (2%) also associated with pathogenicity

" Interestingly, some pathogenetic variants were also observed in healthy individuals

Figure 10-a: Partial examples of DMD gene variants by ACMG-AMP classifications
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Figure 10-b: SNPs by ACMG-AMP Classification Example in DMD
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Interaction network resulting from the genetic %
modifiers identified in DMD patients %

Figure 11: PPl network in DMD patients
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® Only interactions with confidence
score over 0.9 were mapped to
network.

® SPP1 interact with DMD through
ITGB1, which has highest node
degree and BC values in the network.

® Among the “seed” genetic modifiers,
THBS1 has higher network
topological parameters, followed by
SPP1, ACTN3 and LTBP4. The
network enrichment p-value
was < 3.09e-08.
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Reference source: STRING Consortium 2000



DMD genetic alterations using cBioPortal data é

Alteration Freguency

Figure 12: Frequency of GMD genetic alternations in different types of tumors
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e Cancer Patients with DMD alterations have
poorer overall survival

2

“

Figure 13: Pooled data (30 different cancer studies) Figure 14: Invasive Breast Carcinoma
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Conclusions é

“

® To our knowledge, this is the first data mining study with a systematic analysis of all
exon variants, especially SNPs, in the one of the largest known human gene.

® This study examined total 3,627 exonic SNPs in the DMD gene. Nonsynonymous
account for nearly 64% of all mutations. Exon 19 appeared to have most density of
pathogenic SNP distribution. Nonsense mutation (i.e. stopgain) or frameshift
mutation likely lead to more pathogenic.

® According to 1000 Genomes project, genetic variants (i.e., nonsynonymous
mutation) associated with relatively higher alteration frequency in African.
Similar frequency distributions were observed among America, Europe, East and
South Asia.

® Protein network analysis highlighted non-random interconnectivity between the
genetic modifiers identified in DMD patients, and potentially shed light on new
genetic modifiers by their functional coupling to these known genes.

® This study result also suggest DMD gene may serve as a diagnostic and
therapeutic target for certain types of cancer.
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