

Systematic Analysis of Genetic Variation of Duchenne Muscular Dystrophy and Implication for Cancer

Hubert Chen

West Windsor-Plainsboro South High School, NJ Mentor: Pingzhang Wang, Betty Wang

3/2/2020

Duchenne muscular dystrophy (DMD) disease overview

- DMD is a rare, severe, progressive genetic disorder causing disability and premature death
- Mutations in DMD gene, encoding dystrophin protein, lead to DMD.
- DMD primarily affects boys. The prevalence is approximately 1 in 3500 to 5000 male births worldwide.
- DMD symptom onset usually between ages 3 and 5 years.
- Phenotypic variations in DMD may also occur in patients with same primary mutation due to secondary genetic modifiers.

Figure 1: Duchenne's Impact on the Body

Reference source: Cure Duchenne

Duchenne muscular dystrophy (DMD) gene overview

- DMD: One of the largest known human gene, spanning 2.4 Mb genomic sequence.
- DMD gene consists: 79 exons encoding a 14,000 bp messenger RNA transcript.
- DMD patients: Protein translation is stopped prematurely.
 - > Frame-shifting mutations (e.g. deletion of exons 47–50, Figure 2-A, top panel)
 - Lead to inclusion of aberrant amino acids
 - Generally premature truncation of translation.
 - ➤ Alternatively, a point mutation (nonsense mutation)
 - Can change an amino acid codon into a stop codon (Figure 2-B, bottom panel)

Figure 2: Schematic depiction of dystrophin transcripts in healthy and DMD

Reference source: Annemieke Aartsma-Rus et al, J Med Genet, 2016 Mar, 53(3):145-51

Dystrophin protein and dystroglycan complex overview

- Full length of dystrophin protein consists of 3,685 amino acids with 427 kDa.
- It consists of four major functional domains: actin-binding Nterminal domain (encoded by exon 1-8), central rod domain (encoded by exon 8-61), cysteine-rich domain (encoded by exon 62-69) and C-terminal domain (encoded by exon 69-79).
- Cysteine-rich domain together with C-terminal domain interact with different proteins including β-dystroglycan, syntrophin and dystrobrevin to make up dystrophin-glycoprotein complex.

Figure 3: Dystrophin and dystrophin-associated glycoprotein complex

EXTRACELLULAR MATRIX

MUSCLE FIBRE

Reference source: ResearchGate.net

Research objectives and workflows

- Carry out a systematic analysis of the DMD genetic variants via dbSNP database
- Explore protein-protein interactions for genetic modifiers identified in DMD patients
- Investigate potential relationships of genetic alternations in the DMD gene with cancer

Figure 4: Research workflows

Research materials and methods

- Extract DMD genetic variants via dbSNP Database with variant call format (VCF)
- Functional annotation with wANNOVAR: Variant prioritization (Figure 5)
- Retrieve the longest transcript ENST0000035703 (Figure 6)

Figure 5: Genomic catalog in DMD gene

Func.ensGene	Count	Count
downstream	151	Count
exonic	3626	
exonic;splicing	1	
intergenic	203	upstream
intronic	376096	0%
ncRNA_exonic	340	UTR3
ncRNA_intronic	251	0%
ncRNA_splicing	1	UTR5
splicing	99	0% splicing
upstream	167	0%
UTR3	1069	intronic exonic;splicing
UTR5	156	99% < 1%
Total	382160	

Focus on variants in exonic (coding)
 region can alter the protein function

Figure 6: R coding for the longest transcript

```
Amino Acid Change info in Transcript
E
    ENSG00000198947:ENST00000378705:exon2:c.1
    06 113del:p.R36Gfs*2,ENSG00000198947:ENST0
    0000361471:exon6:c.532 539del:p.R178Gfs*1,
O
    ENSG00000198947:ENST00000378702:exon6:c.5
 n
    32 539del:p.R178Gfs*,ENSG00000198947:ENST0
    0000357033:exon67:c.9736 9743del:p.R3246Gfs
    *1,ENSG00000198947:ENST00000378677:exon6
    7:c.9724 9731del:p.R3242Gfs*1
       DMD_query.output.exome_summary.csv')
    head(DMD)
    library(stringr)
    location<-str_locate(DMD$AAChange.ensGene,
46
                          "ENST00000357033")
    location
    startpos<-location[,1] startpos
    endpos<-location[,2] endpos
    str_sub(DMD$AAChange.ensGene,startpos,endp
    DMD_ENST_Output<-str_sub
52
    (DMD$AAChange.ensGene,startpos, endpos+25)
53
    write.csv(DMD_ENST_putput,
               file = "DMD_ENST_Output.csv")
```

Research materials and methods

- Protein-protein interactions (PPI) map for genetic modifiers identified in DMD patients was constructed using STRING v11. Subsequently analyzed using Cytoscape 3.8.1 plugin Network Analyzer.
- Genetic alternations in the DMD gene with cancer was examined by using cBioPortal.
 - ➤ Data from 25 published TCGA cancer studies and 4 pediatric cancer studies that included a minimum of 100 samples. One study that reported 43 rabdomyosarcomas cases has also been included.
 - ➤ Total 11927 patients (age from ~ 3 years to 90 years; ~ 48% male and ~ 46% female; ~ 60% White, ~7% black or Africa America and ~ 5% Asian).
 - ➤ Kaplan-Meier curves were stratified by genotype and comparisons were tested using the Log-rank test.

Variants type and frequency of amnio acid change in the DMD gene

Table 1: Examples of DMD gene mutation

framesh deletio	- 1	frames	shift insertion	frame: substitu	•	nonframeshift deletion		nonframeshift insertion		nonframeshift substitution		stopgain		nonsynonymous		synonymous	
Ref	Alt	Ref	Alt	Ref	Alt	Ref	Ref Alt		Alt	Ref	Alt	Ref	Alt	Ref	Alt	Ref	Alt
A	-	-	Α	GGT	AAAC	CTT	-	-	TTATACGG	GCC	AAT	Α	T	Α	С	G	T
AAAGACTTC	-	-	AAAC	TCCAAAG	CC	ACTGAT	-	-	TGA			G	Α	Т	С	T	С
AACGGGACT	-	-	ACCATGTGAG	TT	Α	AGG	-	-	ATC			G	С	G	Α	С	Т
AACTGTCT	-	-	AGAC			GTT	-	-	ACA			-	TTAC	Α	G	G	Α
AG	-	-	AT			AGA	-					T	Α	Α	С	Т	С
ATAA	-	-	С			GGACGA	-					С	T	T	С	T	G

^{**} Ref: Original nucleotide(s) present before mutation Alt: Alternative nucleotide(s) present after mutation

Figure 7: Frequency of amnio acid change in DMD gene

- Insertion, deletion, substitution that cause frameshift changes in protein coding sequence.
- The largest category: nonsynonymous, follow by synonymous and stop gain.

Vaniants Type	Count	Frequency	Count and Percentage of High frequency				
frameshift deletion	116	3.20%	AA				
frameshift insertion	47	1.30%	G>A	614	17%		
frameshift substitution	3	0.08%	C>T	561	15%		
	27	0.749/	T>C	533	15%		
nonframeshift deletion	27	0.74%	A>G	303	8%		
nonframeshift insertion	4	0.11%	C>A	259	7%		
nonframeshift substitution	1	0.03%	G>C	213	6%		
CAN/	2222	C4 000/	T>A	203	6%		
nonsynonymous SNV	2322	64.02%	C>G	182	5%		
startloss	1	0.03%	T>G	178	5%		
	_		G>T	177	5%		
stopgain	242	6.67%	A>T	100	3%		
synonymous SNV	864	23.82%	A>C	93	3%		
			Other	211	6%		
Total unique samples	3627		Toatl	3627			

Distribution of SNPs by exonic region

- SNPs distributed across almost all exons. Exon 79 is the longest with 2703 bp in length. Exon 78 is the shortest with 32 bp
- **Normalized** exon length, then Exon 19 has most density of pathogenic SNP distribution.

Figure 8: Exon 78 and Exon 79 length example of DMD gene ENST00000357033

X protein_coding	transcript	Start	End	Length	gene_id "ENSG00000198947"; transcript_id "ENST00000357033"; gene_name "DMD"; gene_source "ensembl_h
X protein_coding	exon	31144759	31144790	32	gene_id "ENSG00000198947"; transcript_id "ENST00000357033"; exon_number "78"; gene_name "DMD"; gene_
X protein_coding	exon	31137345	31140047	2703	gene_id "ENSG00000198947"; transcript_id "ENST00000357033"; exon_number "79"; gene_name "DMD"; gene_

Figure 9: ClinVar classification VS Exon frequency for DMD Transcript ENST00000357033

Distribution of SNPs by ACMG-AMP classifications

- Nonsense mutation (i.e. stopgain) or frameshift mutation likely lead to more pathogenic.
- Observed a few cases with synonymous mutation (2%) also associated with pathogenicity
- Interestingly, some pathogenetic variants were also observed in healthy individuals

Figure 10-a: Partial examples of DMD gene variants by ACMG-AMP classifications

Chr	Start	Ref	Alt	ExonicFunc.ensGene	Exon	1000G AFR	1000G AMR	1000G EAS	1000G EUR	1000G SAS	COSMIC_DIS	ClinVar_SIG	ClinVar_DIS
X	31196876	T	-	frameshift deletion	exon70						large_intestine	Pathogenic	Duchenne_muscular_dystrophy
X	33229415	Π	Α	frameshift substitution	exon1							Pathogenic	Duchenne_muscular_dystrophy
X	32867917	С	G	startloss	exon3								
X	31196906	тст	-	nonframeshift deletion	exon70							Pathogenic	Duchenne_muscular_dystrophy
X	31514988	G	Α	stopgain	exon57					0.001		Pathogenic	Dilated_cardiomyopathy_3B
X	32305668	T	Α	stopgain	exon43		0.002						

Figure 10-b: SNPs by ACMG-AMP Classification Example in DMD

	Stopgain	Frameshift deletion	Nonsynonymous SNV	Frameshift Insertion	Synonymous SNV
Pathogenic	151	57	26	20	5
Likely Pathogenic	1	1	0	0	0
Benign	0	0	47	0	24
Likely Benign	0	0	16	0	16
Uncertain Significance	1	0	35	0	0

Interaction network resulting from the genetic modifiers identified in DMD patients

- Only interactions with confidence score over 0.9 were mapped to network.
- SPP1 interact with DMD through ITGB1, which has highest node degree and BC values in the network.
- Among the "seed" genetic modifiers, THBS1 has higher network topological parameters, followed by SPP1, ACTN3 and LTBP4. The network enrichment p-value was < 3.09e-08.</p>

Figure 11: PPI network in DMD patients

Reference source: STRING Consortium 2000

DMD genetic alterations using cBioPortal data

- The majority of genetic alterations corresponded to mutations, deep deletions.
- Low frequency of gene amplifications.
- DMD alterations were not found in samples (rabdomyosarcomas)

Reference source: cBioPortal for Cancer Genomics

Cancer Patients with DMD alterations have poorer overall survival

Figure 13: Pooled data (30 different cancer studies)

- Other tumor types e.g. ovarian carcinomas showed similar trend, but not statistically significant.
- The majority of tumor specimens had lower DMD expression compared to the normal adjacent tissue.
- The relationship between DMD genetic status and prognosis may be tumor-type specific.

Figure 14: Invasive Breast Carcinoma

Figure 15: Esophageal Carcinoma

Conclusions

- To our knowledge, this is the first data mining study with a systematic analysis of all exon variants, especially SNPs, in the one of the largest known human gene.
- This study examined total 3,627 exonic SNPs in the DMD gene. **Nonsynonymous** account for nearly 64% of all mutations. **Exon 19** appeared to have most density of pathogenic SNP distribution. Nonsense mutation (i.e. stopgain) or frameshift mutation likely **lead to more pathogenic**.
- According to 1000 Genomes project, genetic variants (i.e., nonsynonymous mutation) associated with relatively higher alteration frequency in African. Similar frequency distributions were observed among America, Europe, East and South Asia.
- Protein network analysis highlighted non-random interconnectivity between the genetic modifiers identified in DMD patients, and potentially shed light on new genetic modifiers by their functional coupling to these known genes.
- This study result also suggest DMD gene may serve as a diagnostic and therapeutic target for certain types of cancer.

Bibliography

- 1. Mohammed, F., et al., Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: The era of personalized medicine. PLoS One, 2018. 13(5): p. e0197205.
- 2. Gadalla, S.M., et al., Cancer risk among patients with myotonic muscular dystrophy. Jama, 2011. 306(22): p. 2480-6.
- 3. Win, A.K., et al., Increased cancer risks in myotonic dystrophy. Mayo Clin Proc, 2012. 87(2): p. 130-5.
- 4. Lab, W.G. wANNOVAR. 2010-2020; Available from: http://wannovar.wglab.org/.
- 5. cBioPortal for Cancer Genomics. 2020; Available from: https://www.cbioportal.org/.
- 6. Nelson, S.F., et al., Emerging genetic therapies to treat Duchenne muscular dystrophy. Current opinion in neurology, 2009. 22(5): p. 532.
- 7. Chang, X. and K. Wang, wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet, 2012. 49(7): p. 433-6.
- 8. Szklarczyk, Damian et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research vol. 47, D1 (2019): D607-D613.